ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2x^{2}-x=12.3
ଉଭୟ ପାର୍ଶ୍ୱରୁ x ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-x-12.3=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 12.3 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-12.3\right)}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ -1, ଏବଂ c ପାଇଁ -12.3 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-12.3\right)}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{1+98.4}}{2\times 2}
-8 କୁ -12.3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{99.4}}{2\times 2}
1 କୁ 98.4 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-1\right)±\frac{\sqrt{2485}}{5}}{2\times 2}
99.4 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{1±\frac{\sqrt{2485}}{5}}{2\times 2}
-1 ର ବିପରୀତ ହେଉଛି 1.
x=\frac{1±\frac{\sqrt{2485}}{5}}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{\frac{\sqrt{2485}}{5}+1}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{1±\frac{\sqrt{2485}}{5}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 1 କୁ \frac{\sqrt{2485}}{5} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{2485}}{20}+\frac{1}{4}
1+\frac{\sqrt{2485}}{5} କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-\frac{\sqrt{2485}}{5}+1}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{1±\frac{\sqrt{2485}}{5}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 1 ରୁ \frac{\sqrt{2485}}{5} ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{\sqrt{2485}}{20}+\frac{1}{4}
1-\frac{\sqrt{2485}}{5} କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{2485}}{20}+\frac{1}{4} x=-\frac{\sqrt{2485}}{20}+\frac{1}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2x^{2}-x=12.3
ଉଭୟ ପାର୍ଶ୍ୱରୁ x ବିୟୋଗ କରନ୍ତୁ.
\frac{2x^{2}-x}{2}=\frac{12.3}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{1}{2}x=\frac{12.3}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{1}{2}x=6.15
12.3 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=6.15+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{1}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=6.15+\frac{1}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{497}{80}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{16} ସହିତ 6.15 ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{1}{4}\right)^{2}=\frac{497}{80}
ଗୁଣନୀୟକ x^{2}-\frac{1}{2}x+\frac{1}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{497}{80}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{1}{4}=\frac{\sqrt{2485}}{20} x-\frac{1}{4}=-\frac{\sqrt{2485}}{20}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{2485}}{20}+\frac{1}{4} x=-\frac{\sqrt{2485}}{20}+\frac{1}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{4} ଯୋଡନ୍ତୁ.