ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-8 ab=16\left(-3\right)=-48
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି 16x^{2}+ax+bx-3 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-48 2,-24 3,-16 4,-12 6,-8
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -48 ପ୍ରଦାନ କରିଥାଏ.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-12 b=4
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -8 ପ୍ରଦାନ କରିଥାଏ.
\left(16x^{2}-12x\right)+\left(4x-3\right)
\left(16x^{2}-12x\right)+\left(4x-3\right) ଭାବରେ 16x^{2}-8x-3 ପୁନଃ ଲେଖନ୍ତୁ.
4x\left(4x-3\right)+4x-3
16x^{2}-12xରେ 4x ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(4x-3\right)\left(4x+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 4x-3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
16x^{2}-8x-3=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16\left(-3\right)}}{2\times 16}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16\left(-3\right)}}{2\times 16}
ବର୍ଗ -8.
x=\frac{-\left(-8\right)±\sqrt{64-64\left(-3\right)}}{2\times 16}
-4 କୁ 16 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-8\right)±\sqrt{64+192}}{2\times 16}
-64 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-8\right)±\sqrt{256}}{2\times 16}
64 କୁ 192 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-8\right)±16}{2\times 16}
256 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{8±16}{2\times 16}
-8 ର ବିପରୀତ ହେଉଛି 8.
x=\frac{8±16}{32}
2 କୁ 16 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{24}{32}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{8±16}{32} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 8 କୁ 16 ସହ ଯୋଡନ୍ତୁ.
x=\frac{3}{4}
8 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{24}{32} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{8}{32}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{8±16}{32} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 8 ରୁ 16 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{1}{4}
8 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-8}{32} ହ୍ରାସ କରନ୍ତୁ.
16x^{2}-8x-3=16\left(x-\frac{3}{4}\right)\left(x-\left(-\frac{1}{4}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ \frac{3}{4} ଏବଂ x_{2} ପାଇଁ -\frac{1}{4} ପ୍ରତିବଦଳ କରନ୍ତୁ.
16x^{2}-8x-3=16\left(x-\frac{3}{4}\right)\left(x+\frac{1}{4}\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.
16x^{2}-8x-3=16\times \frac{4x-3}{4}\left(x+\frac{1}{4}\right)
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା x ରୁ \frac{3}{4} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
16x^{2}-8x-3=16\times \frac{4x-3}{4}\times \frac{4x+1}{4}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା x ସହିତ \frac{1}{4} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
16x^{2}-8x-3=16\times \frac{\left(4x-3\right)\left(4x+1\right)}{4\times 4}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{4x-3}{4} କୁ \frac{4x+1}{4} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
16x^{2}-8x-3=16\times \frac{\left(4x-3\right)\left(4x+1\right)}{16}
4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
16x^{2}-8x-3=\left(4x-3\right)\left(4x+1\right)
16 ଏବଂ 16 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 16 ବାତିଲ୍‌ କରନ୍ତୁ.