b ପାଇଁ ସମାଧାନ କରନ୍ତୁ
b=6\sqrt{3}\approx 10.392304845
b=-6\sqrt{3}\approx -10.392304845
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
144-6^{2}=b^{2}
2 ର 12 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 144 ପ୍ରାପ୍ତ କରନ୍ତୁ.
144-36=b^{2}
2 ର 6 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 36 ପ୍ରାପ୍ତ କରନ୍ତୁ.
108=b^{2}
108 ପ୍ରାପ୍ତ କରିବାକୁ 144 ଏବଂ 36 ବିୟୋଗ କରନ୍ତୁ.
b^{2}=108
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
b=6\sqrt{3} b=-6\sqrt{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
144-6^{2}=b^{2}
2 ର 12 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 144 ପ୍ରାପ୍ତ କରନ୍ତୁ.
144-36=b^{2}
2 ର 6 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 36 ପ୍ରାପ୍ତ କରନ୍ତୁ.
108=b^{2}
108 ପ୍ରାପ୍ତ କରିବାକୁ 144 ଏବଂ 36 ବିୟୋଗ କରନ୍ତୁ.
b^{2}=108
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
b^{2}-108=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 108 ବିୟୋଗ କରନ୍ତୁ.
b=\frac{0±\sqrt{0^{2}-4\left(-108\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 0, ଏବଂ c ପାଇଁ -108 ପ୍ରତିବଦଳ କରନ୍ତୁ.
b=\frac{0±\sqrt{-4\left(-108\right)}}{2}
ବର୍ଗ 0.
b=\frac{0±\sqrt{432}}{2}
-4 କୁ -108 ଥର ଗୁଣନ କରନ୍ତୁ.
b=\frac{0±12\sqrt{3}}{2}
432 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
b=6\sqrt{3}
ବର୍ତ୍ତମାନ ସମୀକରଣ b=\frac{0±12\sqrt{3}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ.
b=-6\sqrt{3}
ବର୍ତ୍ତମାନ ସମୀକରଣ b=\frac{0±12\sqrt{3}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ.
b=6\sqrt{3} b=-6\sqrt{3}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}