x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\frac{\sqrt{2400009}-3}{400000}\approx 0.003865491
x=\frac{-\sqrt{2400009}-3}{400000}\approx -0.003880491
ଗ୍ରାଫ୍
କ୍ୱିଜ୍
Quadratic Equation
5 ଟି ପ୍ରଶ୍ନ ଏହି ପରି ଅଟେ:
1.5 \times 10 ^ { - 5 } = \frac { ( x ) ( x ) } { 1 - x }
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
1.5\times 10^{-5}\left(-x+1\right)=xx
ଭାରିଏବୁଲ୍ x 1 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ -x+1 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
1.5\times 10^{-5}\left(-x+1\right)=x^{2}
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
1.5\times \frac{1}{100000}\left(-x+1\right)=x^{2}
-5 ର 10 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ \frac{1}{100000} ପ୍ରାପ୍ତ କରନ୍ତୁ.
\frac{3}{200000}\left(-x+1\right)=x^{2}
\frac{3}{200000} ପ୍ରାପ୍ତ କରିବାକୁ 1.5 ଏବଂ \frac{1}{100000} ଗୁଣନ କରନ୍ତୁ.
-\frac{3}{200000}x+\frac{3}{200000}=x^{2}
\frac{3}{200000} କୁ -x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-\frac{3}{200000}x+\frac{3}{200000}-x^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
-x^{2}-\frac{3}{200000}x+\frac{3}{200000}=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\left(-\frac{3}{200000}\right)^{2}-4\left(-1\right)\times \frac{3}{200000}}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ -\frac{3}{200000}, ଏବଂ c ପାଇଁ \frac{3}{200000} ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\frac{9}{40000000000}-4\left(-1\right)\times \frac{3}{200000}}}{2\left(-1\right)}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{3}{200000} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\frac{9}{40000000000}+4\times \frac{3}{200000}}}{2\left(-1\right)}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\frac{9}{40000000000}+\frac{3}{50000}}}{2\left(-1\right)}
4 କୁ \frac{3}{200000} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\frac{2400009}{40000000000}}}{2\left(-1\right)}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{3}{50000} ସହିତ \frac{9}{40000000000} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=\frac{-\left(-\frac{3}{200000}\right)±\frac{\sqrt{2400009}}{200000}}{2\left(-1\right)}
\frac{2400009}{40000000000} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{\frac{3}{200000}±\frac{\sqrt{2400009}}{200000}}{2\left(-1\right)}
-\frac{3}{200000} ର ବିପରୀତ ହେଉଛି \frac{3}{200000}.
x=\frac{\frac{3}{200000}±\frac{\sqrt{2400009}}{200000}}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{\sqrt{2400009}+3}{-2\times 200000}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{\frac{3}{200000}±\frac{\sqrt{2400009}}{200000}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. \frac{3}{200000} କୁ \frac{\sqrt{2400009}}{200000} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\sqrt{2400009}-3}{400000}
\frac{3+\sqrt{2400009}}{200000} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{3-\sqrt{2400009}}{-2\times 200000}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{\frac{3}{200000}±\frac{\sqrt{2400009}}{200000}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. \frac{3}{200000} ରୁ \frac{\sqrt{2400009}}{200000} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{\sqrt{2400009}-3}{400000}
\frac{3-\sqrt{2400009}}{200000} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-\sqrt{2400009}-3}{400000} x=\frac{\sqrt{2400009}-3}{400000}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
1.5\times 10^{-5}\left(-x+1\right)=xx
ଭାରିଏବୁଲ୍ x 1 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ -x+1 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
1.5\times 10^{-5}\left(-x+1\right)=x^{2}
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
1.5\times \frac{1}{100000}\left(-x+1\right)=x^{2}
-5 ର 10 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ \frac{1}{100000} ପ୍ରାପ୍ତ କରନ୍ତୁ.
\frac{3}{200000}\left(-x+1\right)=x^{2}
\frac{3}{200000} ପ୍ରାପ୍ତ କରିବାକୁ 1.5 ଏବଂ \frac{1}{100000} ଗୁଣନ କରନ୍ତୁ.
-\frac{3}{200000}x+\frac{3}{200000}=x^{2}
\frac{3}{200000} କୁ -x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-\frac{3}{200000}x+\frac{3}{200000}-x^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
-\frac{3}{200000}x-x^{2}=-\frac{3}{200000}
ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{3}{200000} ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
-x^{2}-\frac{3}{200000}x=-\frac{3}{200000}
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-x^{2}-\frac{3}{200000}x}{-1}=-\frac{\frac{3}{200000}}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{\frac{3}{200000}}{-1}\right)x=-\frac{\frac{3}{200000}}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+\frac{3}{200000}x=-\frac{\frac{3}{200000}}{-1}
-\frac{3}{200000} କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{3}{200000}x=\frac{3}{200000}
-\frac{3}{200000} କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{3}{200000}x+\left(\frac{3}{400000}\right)^{2}=\frac{3}{200000}+\left(\frac{3}{400000}\right)^{2}
\frac{3}{400000} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, \frac{3}{200000} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{400000} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{3}{200000}x+\frac{9}{160000000000}=\frac{3}{200000}+\frac{9}{160000000000}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{3}{400000} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{3}{200000}x+\frac{9}{160000000000}=\frac{2400009}{160000000000}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{9}{160000000000} ସହିତ \frac{3}{200000} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{3}{400000}\right)^{2}=\frac{2400009}{160000000000}
ଗୁଣନୀୟକ x^{2}+\frac{3}{200000}x+\frac{9}{160000000000}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{3}{400000}\right)^{2}}=\sqrt{\frac{2400009}{160000000000}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{3}{400000}=\frac{\sqrt{2400009}}{400000} x+\frac{3}{400000}=-\frac{\sqrt{2400009}}{400000}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{2400009}-3}{400000} x=\frac{-\sqrt{2400009}-3}{400000}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{3}{400000} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}