ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

-3x^{2}+16x+128=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-16±\sqrt{16^{2}-4\left(-3\right)\times 128}}{2\left(-3\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -3, b ପାଇଁ 16, ଏବଂ c ପାଇଁ 128 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-16±\sqrt{256-4\left(-3\right)\times 128}}{2\left(-3\right)}
ବର୍ଗ 16.
x=\frac{-16±\sqrt{256+12\times 128}}{2\left(-3\right)}
-4 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-16±\sqrt{256+1536}}{2\left(-3\right)}
12 କୁ 128 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-16±\sqrt{1792}}{2\left(-3\right)}
256 କୁ 1536 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-16±16\sqrt{7}}{2\left(-3\right)}
1792 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-16±16\sqrt{7}}{-6}
2 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{16\sqrt{7}-16}{-6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-16±16\sqrt{7}}{-6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -16 କୁ 16\sqrt{7} ସହ ଯୋଡନ୍ତୁ.
x=\frac{8-8\sqrt{7}}{3}
-16+16\sqrt{7} କୁ -6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-16\sqrt{7}-16}{-6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-16±16\sqrt{7}}{-6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -16 ରୁ 16\sqrt{7} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{8\sqrt{7}+8}{3}
-16-16\sqrt{7} କୁ -6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{8-8\sqrt{7}}{3} x=\frac{8\sqrt{7}+8}{3}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
-3x^{2}+16x+128=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
-3x^{2}+16x+128-128=-128
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 128 ବିୟୋଗ କରନ୍ତୁ.
-3x^{2}+16x=-128
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 128 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{-3x^{2}+16x}{-3}=-\frac{128}{-3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{16}{-3}x=-\frac{128}{-3}
-3 ଦ୍ୱାରା ବିଭାଜନ କରିବା -3 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{16}{3}x=-\frac{128}{-3}
16 କୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{16}{3}x=\frac{128}{3}
-128 କୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{16}{3}x+\left(-\frac{8}{3}\right)^{2}=\frac{128}{3}+\left(-\frac{8}{3}\right)^{2}
-\frac{8}{3} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{16}{3} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{8}{3} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{16}{3}x+\frac{64}{9}=\frac{128}{3}+\frac{64}{9}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{8}{3} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{16}{3}x+\frac{64}{9}=\frac{448}{9}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{64}{9} ସହିତ \frac{128}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{8}{3}\right)^{2}=\frac{448}{9}
ଗୁଣନୀୟକ x^{2}-\frac{16}{3}x+\frac{64}{9}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{8}{3}\right)^{2}}=\sqrt{\frac{448}{9}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{8}{3}=\frac{8\sqrt{7}}{3} x-\frac{8}{3}=-\frac{8\sqrt{7}}{3}
ସରଳୀକୃତ କରିବା.
x=\frac{8\sqrt{7}+8}{3} x=\frac{8-8\sqrt{7}}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{8}{3} ଯୋଡନ୍ତୁ.