ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

-x^{2}+14x=-11
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
-x^{2}+14x-\left(-11\right)=-11-\left(-11\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 11 ଯୋଡନ୍ତୁ.
-x^{2}+14x-\left(-11\right)=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -11 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
-x^{2}+14x+11=0
0 ରୁ -11 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-14±\sqrt{14^{2}-4\left(-1\right)\times 11}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ 14, ଏବଂ c ପାଇଁ 11 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-14±\sqrt{196-4\left(-1\right)\times 11}}{2\left(-1\right)}
ବର୍ଗ 14.
x=\frac{-14±\sqrt{196+4\times 11}}{2\left(-1\right)}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-14±\sqrt{196+44}}{2\left(-1\right)}
4 କୁ 11 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-14±\sqrt{240}}{2\left(-1\right)}
196 କୁ 44 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-14±4\sqrt{15}}{2\left(-1\right)}
240 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-14±4\sqrt{15}}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{4\sqrt{15}-14}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-14±4\sqrt{15}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -14 କୁ 4\sqrt{15} ସହ ଯୋଡନ୍ତୁ.
x=7-2\sqrt{15}
-14+4\sqrt{15} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-4\sqrt{15}-14}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-14±4\sqrt{15}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -14 ରୁ 4\sqrt{15} ବିୟୋଗ କରନ୍ତୁ.
x=2\sqrt{15}+7
-14-4\sqrt{15} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=7-2\sqrt{15} x=2\sqrt{15}+7
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
-x^{2}+14x=-11
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-x^{2}+14x}{-1}=-\frac{11}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{14}{-1}x=-\frac{11}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-14x=-\frac{11}{-1}
14 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-14x=11
-11 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-14x+\left(-7\right)^{2}=11+\left(-7\right)^{2}
-7 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -14 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -7 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-14x+49=11+49
ବର୍ଗ -7.
x^{2}-14x+49=60
11 କୁ 49 ସହ ଯୋଡନ୍ତୁ.
\left(x-7\right)^{2}=60
ଗୁଣନୀୟକ x^{2}-14x+49. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-7\right)^{2}}=\sqrt{60}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-7=2\sqrt{15} x-7=-2\sqrt{15}
ସରଳୀକୃତ କରିବା.
x=2\sqrt{15}+7 x=7-2\sqrt{15}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 7 ଯୋଡନ୍ତୁ.