ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
w.r.t. x ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\left(-x^{1}\right)^{1}\times \frac{1}{x^{2}}
ଅଭିବ୍ୟକ୍ତିଙ୍କୁ ସରଳୀକୃତ କରିବା ପାଇଁ ଘାତାଙ୍କର ନିୟମଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
-\left(x^{1}\right)^{1}\times \frac{1}{1}\times \frac{1}{x^{2}}
ଦୁଇ କିମ୍ବା ଅଧିକ ସଂଖ୍ୟାର ଉତ୍ପାଦ ଏକ ପାୱାର୍‌କୁ ବୃଦ୍ଧି କରିବାକୁ, ପ୍ରତ୍ୟେକ ସଂଖ୍ୟାକୁ ପାୱାର୍‌କୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ସେଗୁଡିକର ଉତ୍ପାଦ ନିଅନ୍ତୁ.
-\frac{1}{1}\left(x^{1}\right)^{1}\times \frac{1}{x^{2}}
ଗୁଣନର ବିନିମେୟ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-\frac{1}{1}x^{1}x^{2\left(-1\right)}
ଏକ ପାୱାର୍‌କୁ ଅନ୍ୟ ଏକ ପାୱାର୍‌କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
-\frac{1}{1}x^{1}x^{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
-\frac{1}{1}x^{1-2}
ସମାନ ଆଧାର ବା ବେସ୍‌ର ପାୱାର୍ଡକୁ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ.
-\frac{1}{1}\times \frac{1}{x}
ଘାତାଙ୍କଗୁଡିକ 1 ଏବଂ -2 ଯୋଡନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\frac{1}{1}\right)x^{1-2})
ସମାନ ଆଧାରର ପାୱାର୍‌ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{1}{x})
ପାଟୀଗଣିତ କରନ୍ତୁ.
-\left(-1\right)x^{-1-1}
ଏକ ପଲିନୋମିଆଲ୍‌ର ଡେରିଭେଟିଭ୍‌ ହେଉଛି ଏହାର ପଦଗୁଡିକର ଡେରିଭେଟିଭ୍‌ଗୁଡିକର ଯୋଗଫଳ. କୌଣସି ସ୍ଥିରାଙ୍କ ସଂଖ୍ୟାର ଡେରିଭେଟିଭ୍‌ ହେଉଛି 0. ax^{n} ର ଡେରିଭେଟିଭ୍‌ ହେଉଛି nax^{n-1}.
x^{-2}
ପାଟୀଗଣିତ କରନ୍ତୁ.