ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

6-x^{2}+7x=30
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
6-x^{2}+7x-30=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 30 ବିୟୋଗ କରନ୍ତୁ.
-24-x^{2}+7x=0
-24 ପ୍ରାପ୍ତ କରିବାକୁ 6 ଏବଂ 30 ବିୟୋଗ କରନ୍ତୁ.
-x^{2}+7x-24=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-7±\sqrt{7^{2}-4\left(-1\right)\left(-24\right)}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ 7, ଏବଂ c ପାଇଁ -24 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-7±\sqrt{49-4\left(-1\right)\left(-24\right)}}{2\left(-1\right)}
ବର୍ଗ 7.
x=\frac{-7±\sqrt{49+4\left(-24\right)}}{2\left(-1\right)}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-7±\sqrt{49-96}}{2\left(-1\right)}
4 କୁ -24 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-7±\sqrt{-47}}{2\left(-1\right)}
49 କୁ -96 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-7±\sqrt{47}i}{2\left(-1\right)}
-47 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-7±\sqrt{47}i}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-7+\sqrt{47}i}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-7±\sqrt{47}i}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -7 କୁ i\sqrt{47} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\sqrt{47}i+7}{2}
-7+i\sqrt{47} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-\sqrt{47}i-7}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-7±\sqrt{47}i}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -7 ରୁ i\sqrt{47} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{7+\sqrt{47}i}{2}
-7-i\sqrt{47} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-\sqrt{47}i+7}{2} x=\frac{7+\sqrt{47}i}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
6-x^{2}+7x=30
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
-x^{2}+7x=30-6
ଉଭୟ ପାର୍ଶ୍ୱରୁ 6 ବିୟୋଗ କରନ୍ତୁ.
-x^{2}+7x=24
24 ପ୍ରାପ୍ତ କରିବାକୁ 30 ଏବଂ 6 ବିୟୋଗ କରନ୍ତୁ.
\frac{-x^{2}+7x}{-1}=\frac{24}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{7}{-1}x=\frac{24}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-7x=\frac{24}{-1}
7 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-7x=-24
24 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-24+\left(-\frac{7}{2}\right)^{2}
-\frac{7}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -7 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{7}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-7x+\frac{49}{4}=-24+\frac{49}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{7}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-7x+\frac{49}{4}=-\frac{47}{4}
-24 କୁ \frac{49}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{7}{2}\right)^{2}=-\frac{47}{4}
ଗୁଣନୀୟକ x^{2}-7x+\frac{49}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{-\frac{47}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{7}{2}=\frac{\sqrt{47}i}{2} x-\frac{7}{2}=-\frac{\sqrt{47}i}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{7+\sqrt{47}i}{2} x=\frac{-\sqrt{47}i+7}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{2} ଯୋଡନ୍ତୁ.