ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

4x^{2}-19x+12=12
x-4 କୁ 4x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
4x^{2}-19x+12-12=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 12 ବିୟୋଗ କରନ୍ତୁ.
4x^{2}-19x=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 12 ଏବଂ 12 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ -19, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-19\right)±19}{2\times 4}
\left(-19\right)^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{19±19}{2\times 4}
-19 ର ବିପରୀତ ହେଉଛି 19.
x=\frac{19±19}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{38}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{19±19}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 19 କୁ 19 ସହ ଯୋଡନ୍ତୁ.
x=\frac{19}{4}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{38}{8} ହ୍ରାସ କରନ୍ତୁ.
x=\frac{0}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{19±19}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 19 ରୁ 19 ବିୟୋଗ କରନ୍ତୁ.
x=0
0 କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{19}{4} x=0
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
4x^{2}-19x+12=12
x-4 କୁ 4x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
4x^{2}-19x=12-12
ଉଭୟ ପାର୍ଶ୍ୱରୁ 12 ବିୟୋଗ କରନ୍ତୁ.
4x^{2}-19x=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 12 ଏବଂ 12 ବିୟୋଗ କରନ୍ତୁ.
\frac{4x^{2}-19x}{4}=\frac{0}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{19}{4}x=\frac{0}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{19}{4}x=0
0 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{19}{4}x+\left(-\frac{19}{8}\right)^{2}=\left(-\frac{19}{8}\right)^{2}
-\frac{19}{8} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{19}{4} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{19}{8} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{19}{4}x+\frac{361}{64}=\frac{361}{64}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{19}{8} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(x-\frac{19}{8}\right)^{2}=\frac{361}{64}
ଗୁଣନୀୟକ x^{2}-\frac{19}{4}x+\frac{361}{64}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{19}{8}\right)^{2}}=\sqrt{\frac{361}{64}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{19}{8}=\frac{19}{8} x-\frac{19}{8}=-\frac{19}{8}
ସରଳୀକୃତ କରିବା.
x=\frac{19}{4} x=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{19}{8} ଯୋଡନ୍ତୁ.