x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x=-2\sqrt{11}i+20\approx 20-6.633249581i
x=20+2\sqrt{11}i\approx 20+6.633249581i
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
40x-x^{2}-300=144
x-10 କୁ 30-x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
40x-x^{2}-300-144=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 144 ବିୟୋଗ କରନ୍ତୁ.
40x-x^{2}-444=0
-444 ପ୍ରାପ୍ତ କରିବାକୁ -300 ଏବଂ 144 ବିୟୋଗ କରନ୍ତୁ.
-x^{2}+40x-444=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-40±\sqrt{40^{2}-4\left(-1\right)\left(-444\right)}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ 40, ଏବଂ c ପାଇଁ -444 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-40±\sqrt{1600-4\left(-1\right)\left(-444\right)}}{2\left(-1\right)}
ବର୍ଗ 40.
x=\frac{-40±\sqrt{1600+4\left(-444\right)}}{2\left(-1\right)}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-40±\sqrt{1600-1776}}{2\left(-1\right)}
4 କୁ -444 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-40±\sqrt{-176}}{2\left(-1\right)}
1600 କୁ -1776 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-40±4\sqrt{11}i}{2\left(-1\right)}
-176 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-40±4\sqrt{11}i}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-40+4\sqrt{11}i}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-40±4\sqrt{11}i}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -40 କୁ 4i\sqrt{11} ସହ ଯୋଡନ୍ତୁ.
x=-2\sqrt{11}i+20
-40+4i\sqrt{11} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-4\sqrt{11}i-40}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-40±4\sqrt{11}i}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -40 ରୁ 4i\sqrt{11} ବିୟୋଗ କରନ୍ତୁ.
x=20+2\sqrt{11}i
-40-4i\sqrt{11} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-2\sqrt{11}i+20 x=20+2\sqrt{11}i
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
40x-x^{2}-300=144
x-10 କୁ 30-x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
40x-x^{2}=144+300
ଉଭୟ ପାର୍ଶ୍ଵକୁ 300 ଯୋଡନ୍ତୁ.
40x-x^{2}=444
444 ପ୍ରାପ୍ତ କରିବାକୁ 144 ଏବଂ 300 ଯୋଗ କରନ୍ତୁ.
-x^{2}+40x=444
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-x^{2}+40x}{-1}=\frac{444}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{40}{-1}x=\frac{444}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-40x=\frac{444}{-1}
40 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-40x=-444
444 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-40x+\left(-20\right)^{2}=-444+\left(-20\right)^{2}
-20 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -40 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -20 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-40x+400=-444+400
ବର୍ଗ -20.
x^{2}-40x+400=-44
-444 କୁ 400 ସହ ଯୋଡନ୍ତୁ.
\left(x-20\right)^{2}=-44
ଗୁଣନୀୟକ x^{2}-40x+400. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-20\right)^{2}}=\sqrt{-44}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-20=2\sqrt{11}i x-20=-2\sqrt{11}i
ସରଳୀକୃତ କରିବା.
x=20+2\sqrt{11}i x=-2\sqrt{11}i+20
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 20 ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}