ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{4}+2x^{3}-x-2=0
ସରଳୀକୃତ କରିବା.
±2,±1
ପରିମେୟ ମୂଳ ଉପପାଦ୍ୟ ଦ୍ୱାରା, ଏକ ପଲିନୋମିଆଲର ସମସ୍ତ ରେସନାଲ ରୁଟ୍‌ଗୁଡିକ\frac{p}{q} ରୂପରେ ରହିଛି, ଯେଉଁଠାରେ p କନଷ୍ଟାଣ୍ଟ ଟର୍ମ୍‌ -2 କୁ ବିଭାଜିତ କରିଥାଏ ଏବଂ q ଅଗ୍ରଣୀ ଗୁଣାଙ୍କ 1କୁ ବିଭାଜିତ କରିଥାଏ. ସମସ୍ତ ପ୍ରାର୍ଥୀଙ୍କୁ ତାଲିକାଭୁକ୍ତ କରନ୍ତୁ \frac{p}{q}.
x=1
ସମସ୍ତ ଇଣ୍ଟିଜର୍‌ ମୂଲ୍ୟ ଚେଷ୍ଟା କରି ଏହିଭଳି ଗୋଟିଏ ବର୍ଗ ପାଆନ୍ତୁ, ସବୁଠାରୁ ଛୋଟ ସମ୍ପୂର୍ଣ୍ଣ ମୂଲ୍ୟରୁ ପ୍ରାରମ୍ଭ କରି. ଯଦି କୌଣସି ଇଣ୍ଟିଜର୍‌ ବର୍ଗ ମିଳେନାହିଁ, ଭଗ୍ନାଂଶ ଚେଷ୍ଟା କରନ୍ତୁ.
x^{3}+3x^{2}+3x+2=0
ଗୁଣନୀୟକ ଥିଓରମ୍‌ ଦ୍ୱାରା, x-k ହେଉଛି ପ୍ରତିଟି ରୁଟ୍‌ k ପାଇଁ ପଲିନୋମିଆଲର ଏକ ଫ୍ୟାକ୍ଟର ଅଟେ. x^{3}+3x^{2}+3x+2 ପ୍ରାପ୍ତ କରିବାକୁ x^{4}+2x^{3}-x-2 କୁ x-1 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ସେହି ସମୀକରଣକୁ ସମାଧାନ କରନ୍ତୁ ଯେଉଁଠାରେ ଫଳାଫଳ 0 ସହ ସମାନ ହୋଇଥାଏ.
±2,±1
ପରିମେୟ ମୂଳ ଉପପାଦ୍ୟ ଦ୍ୱାରା, ଏକ ପଲିନୋମିଆଲର ସମସ୍ତ ରେସନାଲ ରୁଟ୍‌ଗୁଡିକ\frac{p}{q} ରୂପରେ ରହିଛି, ଯେଉଁଠାରେ p କନଷ୍ଟାଣ୍ଟ ଟର୍ମ୍‌ 2 କୁ ବିଭାଜିତ କରିଥାଏ ଏବଂ q ଅଗ୍ରଣୀ ଗୁଣାଙ୍କ 1କୁ ବିଭାଜିତ କରିଥାଏ. ସମସ୍ତ ପ୍ରାର୍ଥୀଙ୍କୁ ତାଲିକାଭୁକ୍ତ କରନ୍ତୁ \frac{p}{q}.
x=-2
ସମସ୍ତ ଇଣ୍ଟିଜର୍‌ ମୂଲ୍ୟ ଚେଷ୍ଟା କରି ଏହିଭଳି ଗୋଟିଏ ବର୍ଗ ପାଆନ୍ତୁ, ସବୁଠାରୁ ଛୋଟ ସମ୍ପୂର୍ଣ୍ଣ ମୂଲ୍ୟରୁ ପ୍ରାରମ୍ଭ କରି. ଯଦି କୌଣସି ଇଣ୍ଟିଜର୍‌ ବର୍ଗ ମିଳେନାହିଁ, ଭଗ୍ନାଂଶ ଚେଷ୍ଟା କରନ୍ତୁ.
x^{2}+x+1=0
ଗୁଣନୀୟକ ଥିଓରମ୍‌ ଦ୍ୱାରା, x-k ହେଉଛି ପ୍ରତିଟି ରୁଟ୍‌ k ପାଇଁ ପଲିନୋମିଆଲର ଏକ ଫ୍ୟାକ୍ଟର ଅଟେ. x^{2}+x+1 ପ୍ରାପ୍ତ କରିବାକୁ x^{3}+3x^{2}+3x+2 କୁ x+2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ସେହି ସମୀକରଣକୁ ସମାଧାନ କରନ୍ତୁ ଯେଉଁଠାରେ ଫଳାଫଳ 0 ସହ ସମାନ ହୋଇଥାଏ.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 1, b ପାଇଁ 1, ଏବଂ c ପାଇଁ 1 କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-1±\sqrt{-3}}{2}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
± ଯୁକ୍ତ ଥିବା ବେଳେ ଏବଂ ± ବିଯୁକ୍ତ ଥିବା ବେଳେ ସମୀକରଣ x^{2}+x+1=0 ସମାଧାନ କରନ୍ତୁ.
x=1 x=-2 x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
ମିଳିଥିବା ସମସ୍ତ ସମାଧାନର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ.
x^{4}+2x^{3}-x-2=0
ସରଳୀକୃତ କରିବା.
±2,±1
ପରିମେୟ ମୂଳ ଉପପାଦ୍ୟ ଦ୍ୱାରା, ଏକ ପଲିନୋମିଆଲର ସମସ୍ତ ରେସନାଲ ରୁଟ୍‌ଗୁଡିକ\frac{p}{q} ରୂପରେ ରହିଛି, ଯେଉଁଠାରେ p କନଷ୍ଟାଣ୍ଟ ଟର୍ମ୍‌ -2 କୁ ବିଭାଜିତ କରିଥାଏ ଏବଂ q ଅଗ୍ରଣୀ ଗୁଣାଙ୍କ 1କୁ ବିଭାଜିତ କରିଥାଏ. ସମସ୍ତ ପ୍ରାର୍ଥୀଙ୍କୁ ତାଲିକାଭୁକ୍ତ କରନ୍ତୁ \frac{p}{q}.
x=1
ସମସ୍ତ ଇଣ୍ଟିଜର୍‌ ମୂଲ୍ୟ ଚେଷ୍ଟା କରି ଏହିଭଳି ଗୋଟିଏ ବର୍ଗ ପାଆନ୍ତୁ, ସବୁଠାରୁ ଛୋଟ ସମ୍ପୂର୍ଣ୍ଣ ମୂଲ୍ୟରୁ ପ୍ରାରମ୍ଭ କରି. ଯଦି କୌଣସି ଇଣ୍ଟିଜର୍‌ ବର୍ଗ ମିଳେନାହିଁ, ଭଗ୍ନାଂଶ ଚେଷ୍ଟା କରନ୍ତୁ.
x^{3}+3x^{2}+3x+2=0
ଗୁଣନୀୟକ ଥିଓରମ୍‌ ଦ୍ୱାରା, x-k ହେଉଛି ପ୍ରତିଟି ରୁଟ୍‌ k ପାଇଁ ପଲିନୋମିଆଲର ଏକ ଫ୍ୟାକ୍ଟର ଅଟେ. x^{3}+3x^{2}+3x+2 ପ୍ରାପ୍ତ କରିବାକୁ x^{4}+2x^{3}-x-2 କୁ x-1 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ସେହି ସମୀକରଣକୁ ସମାଧାନ କରନ୍ତୁ ଯେଉଁଠାରେ ଫଳାଫଳ 0 ସହ ସମାନ ହୋଇଥାଏ.
±2,±1
ପରିମେୟ ମୂଳ ଉପପାଦ୍ୟ ଦ୍ୱାରା, ଏକ ପଲିନୋମିଆଲର ସମସ୍ତ ରେସନାଲ ରୁଟ୍‌ଗୁଡିକ\frac{p}{q} ରୂପରେ ରହିଛି, ଯେଉଁଠାରେ p କନଷ୍ଟାଣ୍ଟ ଟର୍ମ୍‌ 2 କୁ ବିଭାଜିତ କରିଥାଏ ଏବଂ q ଅଗ୍ରଣୀ ଗୁଣାଙ୍କ 1କୁ ବିଭାଜିତ କରିଥାଏ. ସମସ୍ତ ପ୍ରାର୍ଥୀଙ୍କୁ ତାଲିକାଭୁକ୍ତ କରନ୍ତୁ \frac{p}{q}.
x=-2
ସମସ୍ତ ଇଣ୍ଟିଜର୍‌ ମୂଲ୍ୟ ଚେଷ୍ଟା କରି ଏହିଭଳି ଗୋଟିଏ ବର୍ଗ ପାଆନ୍ତୁ, ସବୁଠାରୁ ଛୋଟ ସମ୍ପୂର୍ଣ୍ଣ ମୂଲ୍ୟରୁ ପ୍ରାରମ୍ଭ କରି. ଯଦି କୌଣସି ଇଣ୍ଟିଜର୍‌ ବର୍ଗ ମିଳେନାହିଁ, ଭଗ୍ନାଂଶ ଚେଷ୍ଟା କରନ୍ତୁ.
x^{2}+x+1=0
ଗୁଣନୀୟକ ଥିଓରମ୍‌ ଦ୍ୱାରା, x-k ହେଉଛି ପ୍ରତିଟି ରୁଟ୍‌ k ପାଇଁ ପଲିନୋମିଆଲର ଏକ ଫ୍ୟାକ୍ଟର ଅଟେ. x^{2}+x+1 ପ୍ରାପ୍ତ କରିବାକୁ x^{3}+3x^{2}+3x+2 କୁ x+2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ସେହି ସମୀକରଣକୁ ସମାଧାନ କରନ୍ତୁ ଯେଉଁଠାରେ ଫଳାଫଳ 0 ସହ ସମାନ ହୋଇଥାଏ.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 1, b ପାଇଁ 1, ଏବଂ c ପାଇଁ 1 କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-1±\sqrt{-3}}{2}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
x\in \emptyset
ଯଦିଓ ଏକ ବିଯୁକ୍ତାତ୍ମକ ସଂଖ୍ୟାର ଚତୁର୍ଭୁଜ ମୂଳ ପ୍ରକୃତ କ୍ଷେତରେ ନ୍ୟସ୍ତ ହୋଇନାହିଁ, କୌଣସି ସମାଧାନ ନାହିଁ.
x=1 x=-2
ମିଳିଥିବା ସମସ୍ତ ସମାଧାନର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ.