ମୂଲ୍ୟାୟନ କରିବା
3\sqrt{77}+11\sqrt{7}\approx 55.428157584
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(3+\sqrt{11}\right)\sqrt{7}\sqrt{11}
7 ପ୍ରାପ୍ତ କରିବାକୁ 10 ଏବଂ 3 ବିୟୋଗ କରନ୍ତୁ.
\left(3+\sqrt{11}\right)\sqrt{77}
ଏକାଧିକ \sqrt{7} ଏବଂ \sqrt{11}କୁ, ସ୍କେୟାର୍ ରୁଟ୍ରେ ଏକାଧିକ ସଂଖ୍ୟା.
3\sqrt{77}+\sqrt{11}\sqrt{77}
3+\sqrt{11} କୁ \sqrt{77} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3\sqrt{77}+\sqrt{11}\sqrt{11}\sqrt{7}
ଗୁଣନିୟକ 77=11\times 7. ସ୍କେୟାର୍ ରୁଟ୍ \sqrt{11}\sqrt{7} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{11\times 7} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ.
3\sqrt{77}+11\sqrt{7}
11 ପ୍ରାପ୍ତ କରିବାକୁ \sqrt{11} ଏବଂ \sqrt{11} ଗୁଣନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}