t ପାଇଁ ସମାଧାନ କରନ୍ତୁ
t=\frac{\sqrt{38}e^{-\frac{\arctan(\frac{\sqrt{37}}{18})i}{2}}}{2}\approx 3.041381265-0.5i
t=\frac{\sqrt{38}e^{\frac{-\arctan(\frac{\sqrt{37}}{18})i+2\pi i}{2}}}{2}\approx -3.041381265+0.5i
t=\frac{\sqrt{38}e^{\frac{\arctan(\frac{\sqrt{37}}{18})i}{2}}}{2}\approx 3.041381265+0.5i
t=\frac{\sqrt{38}e^{\frac{\arctan(\frac{\sqrt{37}}{18})i+2\pi i}{2}}}{2}\approx -3.041381265-0.5i
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2^{2}t^{2}+\left(19-2t^{2}\right)^{2}=0
ବିସ୍ତାର କରନ୍ତୁ \left(2t\right)^{2}.
4t^{2}+\left(19-2t^{2}\right)^{2}=0
2 ର 2 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 4 ପ୍ରାପ୍ତ କରନ୍ତୁ.
4t^{2}+361-76t^{2}+4\left(t^{2}\right)^{2}=0
\left(19-2t^{2}\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4t^{2}+361-76t^{2}+4t^{4}=0
ଏକ ସଂଖ୍ୟାର ପାୱାର୍ ଅନ୍ୟ ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ. 4 ପାଇବାକୁ 2 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
-72t^{2}+361+4t^{4}=0
-72t^{2} ପାଇବାକୁ 4t^{2} ଏବଂ -76t^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
4t^{2}-72t+361=0
t^{2} ସ୍ଥାନରେ t ପ୍ରତିବଦଳ କରନ୍ତୁ.
t=\frac{-\left(-72\right)±\sqrt{\left(-72\right)^{2}-4\times 4\times 361}}{2\times 4}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 4, b ପାଇଁ -72, ଏବଂ c ପାଇଁ 361 କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
t=\frac{72±\sqrt{-592}}{8}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
t=\frac{\sqrt{37}i}{2}+9 t=-\frac{\sqrt{37}i}{2}+9
± ଯୁକ୍ତ ଥିବା ବେଳେ ଏବଂ ± ବିଯୁକ୍ତ ଥିବା ବେଳେ ସମୀକରଣ t=\frac{72±\sqrt{-592}}{8} ସମାଧାନ କରନ୍ତୁ.
t=\frac{\sqrt{38}e^{\frac{\arctan(\frac{\sqrt{37}}{18})i+2\pi i}{2}}}{2} t=\frac{\sqrt{38}e^{\frac{\arctan(\frac{\sqrt{37}}{18})i}{2}}}{2} t=\frac{\sqrt{38}e^{-\frac{\arctan(\frac{\sqrt{37}}{18})i}{2}}}{2} t=\frac{\sqrt{38}e^{\frac{-\arctan(\frac{\sqrt{37}}{18})i+2\pi i}{2}}}{2}
t=t^{2} ପର ଠାରୁ, ସମାଧାନଗୁଡିକ ପ୍ରତି t ପାଇଁ t=±\sqrt{t} ମୂଲ୍ୟାୟନ କରିବା ଦ୍ୱାରା ପ୍ରାପ୍ତ କରାଯାଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}