ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\left(3x+2\right)^{2}=16
ଉଭୟ ପାର୍ଶ୍ୱକୁ 1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
9x^{2}+12x+4=16
\left(3x+2\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
9x^{2}+12x+4-16=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 16 ବିୟୋଗ କରନ୍ତୁ.
9x^{2}+12x-12=0
-12 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 16 ବିୟୋଗ କରନ୍ତୁ.
3x^{2}+4x-4=0
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a+b=4 ab=3\left(-4\right)=-12
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 3x^{2}+ax+bx-4 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,12 -2,6 -3,4
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -12 ପ୍ରଦାନ କରିଥାଏ.
-1+12=11 -2+6=4 -3+4=1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-2 b=6
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 4 ପ୍ରଦାନ କରିଥାଏ.
\left(3x^{2}-2x\right)+\left(6x-4\right)
\left(3x^{2}-2x\right)+\left(6x-4\right) ଭାବରେ 3x^{2}+4x-4 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(3x-2\right)+2\left(3x-2\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(3x-2\right)\left(x+2\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 3x-2 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{2}{3} x=-2
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 3x-2=0 ଏବଂ x+2=0 ସମାଧାନ କରନ୍ତୁ.
\left(3x+2\right)^{2}=16
ଉଭୟ ପାର୍ଶ୍ୱକୁ 1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
9x^{2}+12x+4=16
\left(3x+2\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
9x^{2}+12x+4-16=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 16 ବିୟୋଗ କରନ୍ତୁ.
9x^{2}+12x-12=0
-12 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 16 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-12±\sqrt{12^{2}-4\times 9\left(-12\right)}}{2\times 9}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 9, b ପାଇଁ 12, ଏବଂ c ପାଇଁ -12 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-12±\sqrt{144-4\times 9\left(-12\right)}}{2\times 9}
ବର୍ଗ 12.
x=\frac{-12±\sqrt{144-36\left(-12\right)}}{2\times 9}
-4 କୁ 9 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-12±\sqrt{144+432}}{2\times 9}
-36 କୁ -12 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-12±\sqrt{576}}{2\times 9}
144 କୁ 432 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-12±24}{2\times 9}
576 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-12±24}{18}
2 କୁ 9 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{12}{18}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-12±24}{18} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -12 କୁ 24 ସହ ଯୋଡନ୍ତୁ.
x=\frac{2}{3}
6 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{12}{18} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{36}{18}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-12±24}{18} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -12 ରୁ 24 ବିୟୋଗ କରନ୍ତୁ.
x=-2
-36 କୁ 18 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{2}{3} x=-2
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
\left(3x+2\right)^{2}=16
ଉଭୟ ପାର୍ଶ୍ୱକୁ 1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
9x^{2}+12x+4=16
\left(3x+2\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
9x^{2}+12x=16-4
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
9x^{2}+12x=12
12 ପ୍ରାପ୍ତ କରିବାକୁ 16 ଏବଂ 4 ବିୟୋଗ କରନ୍ତୁ.
\frac{9x^{2}+12x}{9}=\frac{12}{9}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 9 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{12}{9}x=\frac{12}{9}
9 ଦ୍ୱାରା ବିଭାଜନ କରିବା 9 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{4}{3}x=\frac{12}{9}
3 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{12}{9} ହ୍ରାସ କରନ୍ତୁ.
x^{2}+\frac{4}{3}x=\frac{4}{3}
3 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{12}{9} ହ୍ରାସ କରନ୍ତୁ.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=\frac{4}{3}+\left(\frac{2}{3}\right)^{2}
\frac{2}{3} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{4}{3} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{2}{3} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{4}{3}+\frac{4}{9}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{2}{3} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{16}{9}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{4}{9} ସହିତ \frac{4}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{2}{3}\right)^{2}=\frac{16}{9}
ଗୁଣନୀୟକ x^{2}+\frac{4}{3}x+\frac{4}{9}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{2}{3}=\frac{4}{3} x+\frac{2}{3}=-\frac{4}{3}
ସରଳୀକୃତ କରିବା.
x=\frac{2}{3} x=-2
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{2}{3} ବିୟୋଗ କରନ୍ତୁ.