ମୂଲ୍ୟାୟନ କରିବା
3a
w.r.t. a ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
3
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{\left(-18\right)^{1}a^{2}b^{2}}{\left(-6\right)^{1}a^{1}b^{2}}
ଅଭିବ୍ୟକ୍ତିଙ୍କୁ ସରଳୀକୃତ କରିବା ପାଇଁ ଘାତାଙ୍କର ନିୟମଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{\left(-18\right)^{1}}{\left(-6\right)^{1}}a^{2-1}b^{2-2}
ସମାନ ଆଧାରର ପାୱାର୍ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{\left(-18\right)^{1}}{\left(-6\right)^{1}}a^{1}b^{2-2}
2 ରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
\frac{\left(-18\right)^{1}}{\left(-6\right)^{1}}ab^{0}
2 ରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
\frac{\left(-18\right)^{1}}{\left(-6\right)^{1}}a
0, a^{0}=1 ବ୍ୟତୀତ କୌଣସି ସଂଖ୍ୟା a ପାଇଁ.
3a
-18 କୁ -6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{18b^{2}}{-6b^{2}}\right)a^{2-1})
ସମାନ ଆଧାରର ପାୱାର୍ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{1})
ପାଟୀଗଣିତ କରନ୍ତୁ.
3a^{1-1}
ଏକ ପଲିନୋମିଆଲ୍ର ଡେରିଭେଟିଭ୍ ହେଉଛି ଏହାର ପଦଗୁଡିକର ଡେରିଭେଟିଭ୍ଗୁଡିକର ଯୋଗଫଳ. କୌଣସି ସ୍ଥିରାଙ୍କ ସଂଖ୍ୟାର ଡେରିଭେଟିଭ୍ ହେଉଛି 0. ax^{n} ର ଡେରିଭେଟିଭ୍ ହେଉଛି nax^{n-1}.
3a^{0}
ପାଟୀଗଣିତ କରନ୍ତୁ.
3\times 1
0, t^{0}=1 ବ୍ୟତୀତ ଯେ କୌଣସି ପଦ t ପାଇଁ.
3
ଯେ କୌଣସି ପଦ t, t\times 1=t ଏବଂ 1t=t ପାଇଁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}