ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ଗ୍ରାଫ୍
କ୍ୱିଜ୍‌
Polynomial

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=15 ab=1\times 44=44
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି y^{2}+ay+by+44 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,44 2,22 4,11
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 44 ପ୍ରଦାନ କରିଥାଏ.
1+44=45 2+22=24 4+11=15
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=4 b=11
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 15 ପ୍ରଦାନ କରିଥାଏ.
\left(y^{2}+4y\right)+\left(11y+44\right)
\left(y^{2}+4y\right)+\left(11y+44\right) ଭାବରେ y^{2}+15y+44 ପୁନଃ ଲେଖନ୍ତୁ.
y\left(y+4\right)+11\left(y+4\right)
ପ୍ରଥମଟିରେ y ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 11 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(y+4\right)\left(y+11\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ y+4 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
y^{2}+15y+44=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
y=\frac{-15±\sqrt{15^{2}-4\times 44}}{2}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
y=\frac{-15±\sqrt{225-4\times 44}}{2}
ବର୍ଗ 15.
y=\frac{-15±\sqrt{225-176}}{2}
-4 କୁ 44 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{-15±\sqrt{49}}{2}
225 କୁ -176 ସହ ଯୋଡନ୍ତୁ.
y=\frac{-15±7}{2}
49 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
y=-\frac{8}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ y=\frac{-15±7}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -15 କୁ 7 ସହ ଯୋଡନ୍ତୁ.
y=-4
-8 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=-\frac{22}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ y=\frac{-15±7}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -15 ରୁ 7 ବିୟୋଗ କରନ୍ତୁ.
y=-11
-22 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y^{2}+15y+44=\left(y-\left(-4\right)\right)\left(y-\left(-11\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ -4 ଏବଂ x_{2} ପାଇଁ -11 ପ୍ରତିବଦଳ କରନ୍ତୁ.
y^{2}+15y+44=\left(y+4\right)\left(y+11\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.