ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}-\frac{5}{2}x-\frac{1}{2}=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\left(-\frac{5}{2}\right)^{2}-4\left(-\frac{1}{2}\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -\frac{5}{2}, ଏବଂ c ପାଇଁ -\frac{1}{2} ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25}{4}-4\left(-\frac{1}{2}\right)}}{2}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{5}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25}{4}+2}}{2}
-4 କୁ -\frac{1}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{33}{4}}}{2}
\frac{25}{4} କୁ 2 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-\frac{5}{2}\right)±\frac{\sqrt{33}}{2}}{2}
\frac{33}{4} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{\frac{5}{2}±\frac{\sqrt{33}}{2}}{2}
-\frac{5}{2} ର ବିପରୀତ ହେଉଛି \frac{5}{2}.
x=\frac{\sqrt{33}+5}{2\times 2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{\frac{5}{2}±\frac{\sqrt{33}}{2}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. \frac{5}{2} କୁ \frac{\sqrt{33}}{2} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{33}+5}{4}
\frac{5+\sqrt{33}}{2} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{5-\sqrt{33}}{2\times 2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{\frac{5}{2}±\frac{\sqrt{33}}{2}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. \frac{5}{2} ରୁ \frac{\sqrt{33}}{2} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{5-\sqrt{33}}{4}
\frac{5-\sqrt{33}}{2} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{33}+5}{4} x=\frac{5-\sqrt{33}}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}-\frac{5}{2}x-\frac{1}{2}=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}-\frac{5}{2}x-\frac{1}{2}-\left(-\frac{1}{2}\right)=-\left(-\frac{1}{2}\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{2} ଯୋଡନ୍ତୁ.
x^{2}-\frac{5}{2}x=-\left(-\frac{1}{2}\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -\frac{1}{2} ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}-\frac{5}{2}x=\frac{1}{2}
0 ରୁ -\frac{1}{2} ବିୟୋଗ କରନ୍ତୁ.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{1}{2}+\left(-\frac{5}{4}\right)^{2}
-\frac{5}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{5}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{5}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{1}{2}+\frac{25}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{5}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{33}{16}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{25}{16} ସହିତ \frac{1}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{5}{4}\right)^{2}=\frac{33}{16}
ଗୁଣନୀୟକ x^{2}-\frac{5}{2}x+\frac{25}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{33}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{5}{4}=\frac{\sqrt{33}}{4} x-\frac{5}{4}=-\frac{\sqrt{33}}{4}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{33}+5}{4} x=\frac{5-\sqrt{33}}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{4} ଯୋଡନ୍ତୁ.