ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}+2\left(\frac{\sqrt{2}x}{2}-2\sqrt{2}\right)^{2}=8
\frac{\sqrt{2}}{2}x କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
x^{2}+2\left(\left(\frac{\sqrt{2}x}{2}\right)^{2}-4\times \frac{\sqrt{2}x}{2}\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
\left(\frac{\sqrt{2}x}{2}-2\sqrt{2}\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-4\times \frac{\sqrt{2}x}{2}\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
\frac{\sqrt{2}x}{2} କୁ ଏକ ପାୱାରକୁ ବୃଦ୍ଧି କରିବାକୁ, ଉଭୟ ଲବ ଓ ହରକୁ ପାୱାରକୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ତାପରେ ବିଭାଜନ କରନ୍ତୁ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
4 ଏବଂ 2 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 2 ବାତିଲ୍‌ କରନ୍ତୁ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+4\times 2\right)=8
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+8\right)=8
8 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
x^{2}+2\times \frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
2 କୁ \frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+8 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+2\times \frac{\left(\sqrt{2}\right)^{2}x^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
ବିସ୍ତାର କରନ୍ତୁ \left(\sqrt{2}x\right)^{2}.
x^{2}+2\times \frac{2x^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
x^{2}+2\times \frac{2x^{2}}{4}-4x\left(\sqrt{2}\right)^{2}+16=8
2 ର 2 ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ 4 ପ୍ରାପ୍ତ କରନ୍ତୁ.
x^{2}+2\times \frac{1}{2}x^{2}-4x\left(\sqrt{2}\right)^{2}+16=8
\frac{1}{2}x^{2} ପ୍ରାପ୍ତ କରିବାକୁ 2x^{2} କୁ 4 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
x^{2}+x^{2}-4x\left(\sqrt{2}\right)^{2}+16=8
1 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ \frac{1}{2} ଗୁଣନ କରନ୍ତୁ.
x^{2}+x^{2}-4x\times 2+16=8
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
x^{2}+x^{2}-8x+16=8
-8 ପ୍ରାପ୍ତ କରିବାକୁ -4 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
2x^{2}-8x+16=8
2x^{2} ପାଇବାକୁ x^{2} ଏବଂ x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}-8x+16-8=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-8x+8=0
8 ପ୍ରାପ୍ତ କରିବାକୁ 16 ଏବଂ 8 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-4x+4=0
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a+b=-4 ab=1\times 4=4
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ x^{2}+ax+bx+4 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,-4 -2,-2
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 4 ପ୍ରଦାନ କରିଥାଏ.
-1-4=-5 -2-2=-4
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-2 b=-2
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -4 ପ୍ରଦାନ କରିଥାଏ.
\left(x^{2}-2x\right)+\left(-2x+4\right)
\left(x^{2}-2x\right)+\left(-2x+4\right) ଭାବରେ x^{2}-4x+4 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(x-2\right)-2\left(x-2\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-2\right)\left(x-2\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-2 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-2\right)^{2}
ବାଇନମିଆଲ୍‌ ବର୍ଗ ଭାବେ ପୁଣି ଲେଖନ୍ତୁ.
x=2
ସମୀକରଣ ସମାଧାନ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-2=0 ସମାଧାନ କରନ୍ତୁ.
x^{2}+2\left(\frac{\sqrt{2}x}{2}-2\sqrt{2}\right)^{2}=8
\frac{\sqrt{2}}{2}x କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
x^{2}+2\left(\left(\frac{\sqrt{2}x}{2}\right)^{2}-4\times \frac{\sqrt{2}x}{2}\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
\left(\frac{\sqrt{2}x}{2}-2\sqrt{2}\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-4\times \frac{\sqrt{2}x}{2}\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
\frac{\sqrt{2}x}{2} କୁ ଏକ ପାୱାରକୁ ବୃଦ୍ଧି କରିବାକୁ, ଉଭୟ ଲବ ଓ ହରକୁ ପାୱାରକୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ତାପରେ ବିଭାଜନ କରନ୍ତୁ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
4 ଏବଂ 2 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 2 ବାତିଲ୍‌ କରନ୍ତୁ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+4\times 2\right)=8
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+8\right)=8
8 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
x^{2}+2\times \frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
2 କୁ \frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+8 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+2\times \frac{\left(\sqrt{2}\right)^{2}x^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
ବିସ୍ତାର କରନ୍ତୁ \left(\sqrt{2}x\right)^{2}.
x^{2}+2\times \frac{2x^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
x^{2}+2\times \frac{2x^{2}}{4}-4x\left(\sqrt{2}\right)^{2}+16=8
2 ର 2 ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ 4 ପ୍ରାପ୍ତ କରନ୍ତୁ.
x^{2}+2\times \frac{1}{2}x^{2}-4x\left(\sqrt{2}\right)^{2}+16=8
\frac{1}{2}x^{2} ପ୍ରାପ୍ତ କରିବାକୁ 2x^{2} କୁ 4 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
x^{2}+x^{2}-4x\left(\sqrt{2}\right)^{2}+16=8
1 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ \frac{1}{2} ଗୁଣନ କରନ୍ତୁ.
x^{2}+x^{2}-4x\times 2+16=8
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
x^{2}+x^{2}-8x+16=8
-8 ପ୍ରାପ୍ତ କରିବାକୁ -4 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
2x^{2}-8x+16=8
2x^{2} ପାଇବାକୁ x^{2} ଏବଂ x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}-8x+16-8=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-8x+8=0
8 ପ୍ରାପ୍ତ କରିବାକୁ 16 ଏବଂ 8 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 8}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ -8, ଏବଂ c ପାଇଁ 8 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 8}}{2\times 2}
ବର୍ଗ -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\times 8}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2\times 2}
-8 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-8\right)±\sqrt{0}}{2\times 2}
64 କୁ -64 ସହ ଯୋଡନ୍ତୁ.
x=-\frac{-8}{2\times 2}
0 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{8}{2\times 2}
-8 ର ବିପରୀତ ହେଉଛି 8.
x=\frac{8}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=2
8 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+2\left(\frac{\sqrt{2}x}{2}-2\sqrt{2}\right)^{2}=8
\frac{\sqrt{2}}{2}x କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
x^{2}+2\left(\left(\frac{\sqrt{2}x}{2}\right)^{2}-4\times \frac{\sqrt{2}x}{2}\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
\left(\frac{\sqrt{2}x}{2}-2\sqrt{2}\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-4\times \frac{\sqrt{2}x}{2}\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
\frac{\sqrt{2}x}{2} କୁ ଏକ ପାୱାରକୁ ବୃଦ୍ଧି କରିବାକୁ, ଉଭୟ ଲବ ଓ ହରକୁ ପାୱାରକୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ତାପରେ ବିଭାଜନ କରନ୍ତୁ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
4 ଏବଂ 2 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 2 ବାତିଲ୍‌ କରନ୍ତୁ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+4\times 2\right)=8
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+8\right)=8
8 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
x^{2}+2\times \frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
2 କୁ \frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+8 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+2\times \frac{\left(\sqrt{2}\right)^{2}x^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
ବିସ୍ତାର କରନ୍ତୁ \left(\sqrt{2}x\right)^{2}.
x^{2}+2\times \frac{2x^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
x^{2}+2\times \frac{2x^{2}}{4}-4x\left(\sqrt{2}\right)^{2}+16=8
2 ର 2 ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ 4 ପ୍ରାପ୍ତ କରନ୍ତୁ.
x^{2}+2\times \frac{1}{2}x^{2}-4x\left(\sqrt{2}\right)^{2}+16=8
\frac{1}{2}x^{2} ପ୍ରାପ୍ତ କରିବାକୁ 2x^{2} କୁ 4 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
x^{2}+x^{2}-4x\left(\sqrt{2}\right)^{2}+16=8
1 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ \frac{1}{2} ଗୁଣନ କରନ୍ତୁ.
x^{2}+x^{2}-4x\times 2+16=8
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
x^{2}+x^{2}-8x+16=8
-8 ପ୍ରାପ୍ତ କରିବାକୁ -4 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
2x^{2}-8x+16=8
2x^{2} ପାଇବାକୁ x^{2} ଏବଂ x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}-8x=8-16
ଉଭୟ ପାର୍ଶ୍ୱରୁ 16 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-8x=-8
-8 ପ୍ରାପ୍ତ କରିବାକୁ 8 ଏବଂ 16 ବିୟୋଗ କରନ୍ତୁ.
\frac{2x^{2}-8x}{2}=-\frac{8}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{8}{2}\right)x=-\frac{8}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-4x=-\frac{8}{2}
-8 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-4x=-4
-8 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-4x+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
-2 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -4 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -2 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-4x+4=-4+4
ବର୍ଗ -2.
x^{2}-4x+4=0
-4 କୁ 4 ସହ ଯୋଡନ୍ତୁ.
\left(x-2\right)^{2}=0
ଗୁଣନୀୟକ x^{2}-4x+4. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-2=0 x-2=0
ସରଳୀକୃତ କରିବା.
x=2 x=2
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 2 ଯୋଡନ୍ତୁ.
x=2
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି. ସମାଧାନଗୁଡିକ ସମାନ ଅଛି.