ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
g ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
g ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

gx+1=\tan(2x)
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
gx=\tan(2x)-1
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
xg=\tan(2x)-1
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{xg}{x}=\frac{\left(-1-i\right)e^{2ix}+\left(-1+i\right)e^{-2ix}}{2\cos(2x)x}
ଉଭୟ ପାର୍ଶ୍ୱକୁ x ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
g=\frac{\left(-1-i\right)e^{2ix}+\left(-1+i\right)e^{-2ix}}{2\cos(2x)x}
x ଦ୍ୱାରା ବିଭାଜନ କରିବା x ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
g=\frac{\left(-1-i\right)e^{2ix}+\left(-1+i\right)e^{-2ix}}{2x\cos(2x)}
\frac{\left(-1-i\right)e^{2ix}+\left(-1+i\right)e^{-2ix}}{2\cos(2x)} କୁ x ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
gx+1=\tan(2x)
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
gx=\tan(2x)-1
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
xg=\tan(2x)-1
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{xg}{x}=\frac{\sin(2x)-\cos(2x)}{\cos(2x)x}
ଉଭୟ ପାର୍ଶ୍ୱକୁ x ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
g=\frac{\sin(2x)-\cos(2x)}{\cos(2x)x}
x ଦ୍ୱାରା ବିଭାଜନ କରିବା x ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
g=\frac{\sin(2x)-\cos(2x)}{x\cos(2x)}
\frac{\sin(2x)-\cos(2x)}{\cos(2x)} କୁ x ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.