ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

4\sqrt{2}+\sqrt{0\times 5}-2\sqrt{\frac{1}{3}}-\sqrt{\frac{1}{8}}+\sqrt{12}-\sqrt{18}
ଗୁଣନିୟକ 32=4^{2}\times 2. ସ୍କେୟାର୍ ରୁଟ୍‌ \sqrt{4^{2}}\sqrt{2} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{4^{2}\times 2} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ. 4^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
4\sqrt{2}+\sqrt{0}-2\sqrt{\frac{1}{3}}-\sqrt{\frac{1}{8}}+\sqrt{12}-\sqrt{18}
0 ପ୍ରାପ୍ତ କରିବାକୁ 0 ଏବଂ 5 ଗୁଣନ କରନ୍ତୁ.
4\sqrt{2}+0-2\sqrt{\frac{1}{3}}-\sqrt{\frac{1}{8}}+\sqrt{12}-\sqrt{18}
0 ର ଚତୁର୍ଭୁଜ ମୂଳ ଗଣନା କରନ୍ତୁ ଏବଂ 0 ପ୍ରାପ୍ତ କରନ୍ତୁ.
4\sqrt{2}+0-2\times \frac{\sqrt{1}}{\sqrt{3}}-\sqrt{\frac{1}{8}}+\sqrt{12}-\sqrt{18}
ସ୍କେୟାର୍ ରୁଟ୍‌ \frac{\sqrt{1}}{\sqrt{3}} ର ଡିଭିଜନ୍ ଭାବରେ ଡିଭିଜନ୍ \sqrt{\frac{1}{3}} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ.
4\sqrt{2}+0-2\times \frac{1}{\sqrt{3}}-\sqrt{\frac{1}{8}}+\sqrt{12}-\sqrt{18}
1 ର ଚତୁର୍ଭୁଜ ମୂଳ ଗଣନା କରନ୍ତୁ ଏବଂ 1 ପ୍ରାପ୍ତ କରନ୍ତୁ.
4\sqrt{2}+0-2\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\sqrt{\frac{1}{8}}+\sqrt{12}-\sqrt{18}
ଲବ ଓ ହରକୁ \sqrt{3} ଦ୍ୱାରା ଗୁଣନ କରି \frac{1}{\sqrt{3}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
4\sqrt{2}+0-2\times \frac{\sqrt{3}}{3}-\sqrt{\frac{1}{8}}+\sqrt{12}-\sqrt{18}
\sqrt{3} ର ଚତୁର୍ଭୁଜ ହେଉଛି 3.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\sqrt{\frac{1}{8}}+\sqrt{12}-\sqrt{18}
-2\times \frac{\sqrt{3}}{3} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\frac{\sqrt{1}}{\sqrt{8}}+\sqrt{12}-\sqrt{18}
ସ୍କେୟାର୍ ରୁଟ୍‌ \frac{\sqrt{1}}{\sqrt{8}} ର ଡିଭିଜନ୍ ଭାବରେ ଡିଭିଜନ୍ \sqrt{\frac{1}{8}} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\frac{1}{\sqrt{8}}+\sqrt{12}-\sqrt{18}
1 ର ଚତୁର୍ଭୁଜ ମୂଳ ଗଣନା କରନ୍ତୁ ଏବଂ 1 ପ୍ରାପ୍ତ କରନ୍ତୁ.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\frac{1}{2\sqrt{2}}+\sqrt{12}-\sqrt{18}
ଗୁଣନିୟକ 8=2^{2}\times 2. ସ୍କେୟାର୍ ରୁଟ୍‌ \sqrt{2^{2}}\sqrt{2} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{2^{2}\times 2} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ. 2^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+\sqrt{12}-\sqrt{18}
ଲବ ଓ ହରକୁ \sqrt{2} ଦ୍ୱାରା ଗୁଣନ କରି \frac{1}{2\sqrt{2}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\frac{\sqrt{2}}{2\times 2}+\sqrt{12}-\sqrt{18}
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\frac{\sqrt{2}}{4}+\sqrt{12}-\sqrt{18}
4 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\frac{\sqrt{2}}{4}+2\sqrt{3}-\sqrt{18}
ଗୁଣନିୟକ 12=2^{2}\times 3. ସ୍କେୟାର୍ ରୁଟ୍‌ \sqrt{2^{2}}\sqrt{3} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{2^{2}\times 3} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ. 2^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
4\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\frac{\sqrt{2}}{4}+2\sqrt{3}-3\sqrt{2}
ଗୁଣନିୟକ 18=3^{2}\times 2. ସ୍କେୟାର୍ ରୁଟ୍‌ \sqrt{3^{2}}\sqrt{2} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{3^{2}\times 2} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ. 3^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
\sqrt{2}+0+\frac{-2\sqrt{3}}{3}-\frac{\sqrt{2}}{4}+2\sqrt{3}
\sqrt{2} ପାଇବାକୁ 4\sqrt{2} ଏବଂ -3\sqrt{2} ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{3\left(\sqrt{2}+0+2\sqrt{3}\right)}{3}+\frac{-2\sqrt{3}}{3}-\frac{\sqrt{2}}{4}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. \sqrt{2}+0+2\sqrt{3} କୁ \frac{3}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{3\left(\sqrt{2}+0+2\sqrt{3}\right)-2\sqrt{3}}{3}-\frac{\sqrt{2}}{4}
ଯେହେତୁ \frac{3\left(\sqrt{2}+0+2\sqrt{3}\right)}{3} ଏବଂ \frac{-2\sqrt{3}}{3} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{3\sqrt{2}+6\sqrt{3}-2\sqrt{3}}{3}-\frac{\sqrt{2}}{4}
3\left(\sqrt{2}+0+2\sqrt{3}\right)-2\sqrt{3} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{3\sqrt{2}+4\sqrt{3}}{3}-\frac{\sqrt{2}}{4}
3\sqrt{2}+6\sqrt{3}-2\sqrt{3} ରେ ହିସାବଗୁଡିକ କରନ୍ତୁ.
\frac{4\left(3\sqrt{2}+4\sqrt{3}\right)}{12}-\frac{3\sqrt{2}}{12}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 3 ଏବଂ 4 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 12. \frac{3\sqrt{2}+4\sqrt{3}}{3} କୁ \frac{4}{4} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{\sqrt{2}}{4} କୁ \frac{3}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{4\left(3\sqrt{2}+4\sqrt{3}\right)-3\sqrt{2}}{12}
ଯେହେତୁ \frac{4\left(3\sqrt{2}+4\sqrt{3}\right)}{12} ଏବଂ \frac{3\sqrt{2}}{12} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{12\sqrt{2}+16\sqrt{3}-3\sqrt{2}}{12}
4\left(3\sqrt{2}+4\sqrt{3}\right)-3\sqrt{2} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{9\sqrt{2}+16\sqrt{3}}{12}
12\sqrt{2}+16\sqrt{3}-3\sqrt{2} ରେ ହିସାବଗୁଡିକ କରନ୍ତୁ.