x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-1
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\sqrt{3-x}=3+x
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ -x ବିୟୋଗ କରନ୍ତୁ.
\left(\sqrt{3-x}\right)^{2}=\left(3+x\right)^{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର୍ଅ ବର୍ଗ ବାହାର କରନ୍ତୁ.
3-x=\left(3+x\right)^{2}
2 ର \sqrt{3-x} ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 3-x ପ୍ରାପ୍ତ କରନ୍ତୁ.
3-x=9+6x+x^{2}
\left(3+x\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
3-x-9=6x+x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ 9 ବିୟୋଗ କରନ୍ତୁ.
-6-x=6x+x^{2}
-6 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ 9 ବିୟୋଗ କରନ୍ତୁ.
-6-x-6x=x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ 6x ବିୟୋଗ କରନ୍ତୁ.
-6-7x=x^{2}
-7x ପାଇବାକୁ -x ଏବଂ -6x ସମ୍ମେଳନ କରନ୍ତୁ.
-6-7x-x^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
-x^{2}-7x-6=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-7 ab=-\left(-6\right)=6
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ -x^{2}+ax+bx-6 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,-6 -2,-3
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 6 ପ୍ରଦାନ କରିଥାଏ.
-1-6=-7 -2-3=-5
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-1 b=-6
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -7 ପ୍ରଦାନ କରିଥାଏ.
\left(-x^{2}-x\right)+\left(-6x-6\right)
\left(-x^{2}-x\right)+\left(-6x-6\right) ଭାବରେ -x^{2}-7x-6 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(-x-1\right)+6\left(-x-1\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 6 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(-x-1\right)\left(x+6\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ -x-1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=-1 x=-6
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, -x-1=0 ଏବଂ x+6=0 ସମାଧାନ କରନ୍ତୁ.
\sqrt{3-\left(-1\right)}-\left(-1\right)=3
ସମୀକରଣ \sqrt{3-x}-x=3 ରେ x ସ୍ଥାନରେ -1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
3=3
ସରଳୀକୃତ କରନ୍ତୁ. ମୂଲ୍ୟ x=-1 ସମୀକରଣ ସନ୍ତୁଷ୍ଟ କରିଛି.
\sqrt{3-\left(-6\right)}-\left(-6\right)=3
ସମୀକରଣ \sqrt{3-x}-x=3 ରେ x ସ୍ଥାନରେ -6 ପ୍ରତିବଦଳ କରନ୍ତୁ.
9=3
ସରଳୀକୃତ କରନ୍ତୁ. x=-6 ମୂଲ୍ୟ ସମୀକରଣକୁ ସନ୍ତୁଷ୍ଟ କରେ ନାହିଁ.
x=-1
ସମୀକରଣ \sqrt{3-x}=x+3 ଏକ ସ୍ଵତନ୍ତ୍ର ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}