ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\left(\sqrt{2x+9}\right)^{2}=\left(x+5\right)^{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର୍ଅ ବର୍ଗ ବାହାର କରନ୍ତୁ.
2x+9=\left(x+5\right)^{2}
2 ର \sqrt{2x+9} ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ 2x+9 ପ୍ରାପ୍ତ କରନ୍ତୁ.
2x+9=x^{2}+10x+25
\left(x+5\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
2x+9-x^{2}=10x+25
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
2x+9-x^{2}-10x=25
ଉଭୟ ପାର୍ଶ୍ୱରୁ 10x ବିୟୋଗ କରନ୍ତୁ.
-8x+9-x^{2}=25
-8x ପାଇବାକୁ 2x ଏବଂ -10x ସମ୍ମେଳନ କରନ୍ତୁ.
-8x+9-x^{2}-25=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 25 ବିୟୋଗ କରନ୍ତୁ.
-8x-16-x^{2}=0
-16 ପ୍ରାପ୍ତ କରିବାକୁ 9 ଏବଂ 25 ବିୟୋଗ କରନ୍ତୁ.
-x^{2}-8x-16=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍‌ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-8 ab=-\left(-16\right)=16
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ -x^{2}+ax+bx-16 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,-16 -2,-8 -4,-4
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 16 ପ୍ରଦାନ କରିଥାଏ.
-1-16=-17 -2-8=-10 -4-4=-8
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-4 b=-4
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -8 ପ୍ରଦାନ କରିଥାଏ.
\left(-x^{2}-4x\right)+\left(-4x-16\right)
\left(-x^{2}-4x\right)+\left(-4x-16\right) ଭାବରେ -x^{2}-8x-16 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(-x-4\right)+4\left(-x-4\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 4 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(-x-4\right)\left(x+4\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ -x-4 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=-4 x=-4
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, -x-4=0 ଏବଂ x+4=0 ସମାଧାନ କରନ୍ତୁ.
\sqrt{2\left(-4\right)+9}=-4+5
ସମୀକରଣ \sqrt{2x+9}=x+5 ରେ x ସ୍ଥାନରେ -4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
1=1
ସରଳୀକୃତ କରନ୍ତୁ. ମୂଲ୍ୟ x=-4 ସମୀକରଣ ସନ୍ତୁଷ୍ଟ କରିଛି.
\sqrt{2\left(-4\right)+9}=-4+5
ସମୀକରଣ \sqrt{2x+9}=x+5 ରେ x ସ୍ଥାନରେ -4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
1=1
ସରଳୀକୃତ କରନ୍ତୁ. ମୂଲ୍ୟ x=-4 ସମୀକରଣ ସନ୍ତୁଷ୍ଟ କରିଛି.
x=-4 x=-4
\sqrt{2x+9}=x+5 ର ସମସ୍ତ ସମାଧାନ ତାଲିକା.