ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
b ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
a ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\sqrt{b}\left(1-\left(\sin(a)\right)^{2}\right)=\sin(a)
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
\sqrt{b}-\sqrt{b}\left(\sin(a)\right)^{2}=\sin(a)
\sqrt{b} କୁ 1-\left(\sin(a)\right)^{2} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\left(1-\left(\sin(a)\right)^{2}\right)\sqrt{b}=\sin(a)
b ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\left(-\left(\sin(a)\right)^{2}+1\right)\sqrt{b}}{-\left(\sin(a)\right)^{2}+1}=\frac{\sin(a)}{-\left(\sin(a)\right)^{2}+1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 1-\left(\sin(a)\right)^{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\sqrt{b}=\frac{\sin(a)}{-\left(\sin(a)\right)^{2}+1}
1-\left(\sin(a)\right)^{2} ଦ୍ୱାରା ବିଭାଜନ କରିବା 1-\left(\sin(a)\right)^{2} ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
\sqrt{b}=\frac{\tan(a)}{\cos(a)}
\sin(a) କୁ 1-\left(\sin(a)\right)^{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
b=\frac{\left(\tan(a)\right)^{2}}{\left(\cos(a)\right)^{2}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର୍ଅ ବର୍ଗ ବାହାର କରନ୍ତୁ.