ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

3x+6y=210,\frac{1}{4}x+\frac{1}{5}y=\sqrt{210}
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍‌ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍‌ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍‌ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
3x+6y=210
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x କୁ ପୃଥକ୍‌ କରିବା ଦ୍ୱାରା x ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
3x=-6y+210
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 6y ବିୟୋଗ କରନ୍ତୁ.
x=\frac{1}{3}\left(-6y+210\right)
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-2y+70
\frac{1}{3} କୁ -6y+210 ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{1}{4}\left(-2y+70\right)+\frac{1}{5}y=\sqrt{210}
ଅନ୍ୟ ସମୀକରଣ, \frac{1}{4}x+\frac{1}{5}y=\sqrt{210} ରେ x ସ୍ଥାନରେ -2y+70 ପ୍ରତିବଦଳ କରନ୍ତୁ.
-\frac{1}{2}y+\frac{35}{2}+\frac{1}{5}y=\sqrt{210}
\frac{1}{4} କୁ -2y+70 ଥର ଗୁଣନ କରନ୍ତୁ.
-\frac{3}{10}y+\frac{35}{2}=\sqrt{210}
-\frac{y}{2} କୁ \frac{y}{5} ସହ ଯୋଡନ୍ତୁ.
-\frac{3}{10}y=\sqrt{210}-\frac{35}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{35}{2} ବିୟୋଗ କରନ୍ତୁ.
y=\frac{175-10\sqrt{210}}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ -\frac{3}{10} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
x=-2\times \frac{175-10\sqrt{210}}{3}+70
x=-2y+70 ରେ y ପାଇଁ \frac{-10\sqrt{210}+175}{3} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=\frac{20\sqrt{210}-350}{3}+70
-2 କୁ \frac{-10\sqrt{210}+175}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{20\sqrt{210}-140}{3}
70 କୁ \frac{20\sqrt{210}-350}{3} ସହ ଯୋଡନ୍ତୁ.
x=\frac{20\sqrt{210}-140}{3},y=\frac{175-10\sqrt{210}}{3}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.
3x+6y=210,\frac{1}{4}x+\frac{1}{5}y=\sqrt{210}
ଭାରିଏବୁଲ୍‌ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍‌ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍‌ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
\frac{1}{4}\times 3x+\frac{1}{4}\times 6y=\frac{1}{4}\times 210,3\times \frac{1}{4}x+3\times \frac{1}{5}y=3\sqrt{210}
3x ଏବଂ \frac{x}{4} କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ \frac{1}{4} ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍‌କୁ 3 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
\frac{3}{4}x+\frac{3}{2}y=\frac{105}{2},\frac{3}{4}x+\frac{3}{5}y=3\sqrt{210}
ସରଳୀକୃତ କରିବା.
\frac{3}{4}x-\frac{3}{4}x+\frac{3}{2}y-\frac{3}{5}y=\frac{105}{2}-3\sqrt{210}
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା \frac{3}{4}x+\frac{3}{2}y=\frac{105}{2} ଠାରୁ \frac{3}{4}x+\frac{3}{5}y=3\sqrt{210} କୁ ବିୟୋଗ କରନ୍ତୁ.
\frac{3}{2}y-\frac{3}{5}y=\frac{105}{2}-3\sqrt{210}
\frac{3x}{4} କୁ -\frac{3x}{4} ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ \frac{3x}{4} ଏବଂ -\frac{3x}{4} ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{9}{10}y=\frac{105}{2}-3\sqrt{210}
\frac{3y}{2} କୁ -\frac{3y}{5} ସହ ଯୋଡନ୍ତୁ.
y=\frac{175-10\sqrt{210}}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \frac{9}{10} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
\frac{1}{4}x+\frac{1}{5}\times \frac{175-10\sqrt{210}}{3}=\sqrt{210}
\frac{1}{4}x+\frac{1}{5}y=\sqrt{210} ରେ y ପାଇଁ \frac{175-10\sqrt{210}}{3} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
\frac{1}{4}x+\frac{35-2\sqrt{210}}{3}=\sqrt{210}
\frac{1}{5} କୁ \frac{175-10\sqrt{210}}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{1}{4}x=\frac{5\sqrt{210}-35}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{-2\sqrt{210}+35}{3} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{20\sqrt{210}-140}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x=\frac{20\sqrt{210}-140}{3},y=\frac{175-10\sqrt{210}}{3}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.