x_3, x_2 ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x_{3} = \frac{6060}{667} = 9\frac{57}{667} \approx 9.085457271
x_{2} = \frac{2199}{667} = 3\frac{198}{667} \approx 3.296851574
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
0.041x_{3}+0.16x_{2}=0.9,-0.002x_{3}+0.041x_{2}=0.117
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
0.041x_{3}+0.16x_{2}=0.9
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x_{3} କୁ ପୃଥକ୍ କରିବା ଦ୍ୱାରା x_{3} ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
0.041x_{3}=-0.16x_{2}+0.9
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{4x_{2}}{25} ବିୟୋଗ କରନ୍ତୁ.
x_{3}=\frac{1000}{41}\left(-0.16x_{2}+0.9\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 0.041 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
x_{3}=-\frac{160}{41}x_{2}+\frac{900}{41}
\frac{1000}{41} କୁ -\frac{4x_{2}}{25}+0.9 ଥର ଗୁଣନ କରନ୍ତୁ.
-0.002\left(-\frac{160}{41}x_{2}+\frac{900}{41}\right)+0.041x_{2}=0.117
ଅନ୍ୟ ସମୀକରଣ, -0.002x_{3}+0.041x_{2}=0.117 ରେ x_{3} ସ୍ଥାନରେ \frac{-160x_{2}+900}{41} ପ୍ରତିବଦଳ କରନ୍ତୁ.
\frac{8}{1025}x_{2}-\frac{9}{205}+0.041x_{2}=0.117
-0.002 କୁ \frac{-160x_{2}+900}{41} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{2001}{41000}x_{2}-\frac{9}{205}=0.117
\frac{8x_{2}}{1025} କୁ \frac{41x_{2}}{1000} ସହ ଯୋଡନ୍ତୁ.
\frac{2001}{41000}x_{2}=\frac{6597}{41000}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{9}{205} ଯୋଡନ୍ତୁ.
x_{2}=\frac{2199}{667}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \frac{2001}{41000} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
x_{3}=-\frac{160}{41}\times \frac{2199}{667}+\frac{900}{41}
x_{3}=-\frac{160}{41}x_{2}+\frac{900}{41} ରେ x_{2} ପାଇଁ \frac{2199}{667} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ x_{3} ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x_{3}=-\frac{351840}{27347}+\frac{900}{41}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା -\frac{160}{41} କୁ \frac{2199}{667} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x_{3}=\frac{6060}{667}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା -\frac{351840}{27347} ସହିତ \frac{900}{41} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x_{3}=\frac{6060}{667},x_{2}=\frac{2199}{667}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
0.041x_{3}+0.16x_{2}=0.9,-0.002x_{3}+0.041x_{2}=0.117
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}0.041&0.16\\-0.002&0.041\end{matrix}\right)\left(\begin{matrix}x_{3}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}0.9\\0.117\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}0.041&0.16\\-0.002&0.041\end{matrix}\right))\left(\begin{matrix}0.041&0.16\\-0.002&0.041\end{matrix}\right)\left(\begin{matrix}x_{3}\\x_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}0.041&0.16\\-0.002&0.041\end{matrix}\right))\left(\begin{matrix}0.9\\0.117\end{matrix}\right)
\left(\begin{matrix}0.041&0.16\\-0.002&0.041\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x_{3}\\x_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}0.041&0.16\\-0.002&0.041\end{matrix}\right))\left(\begin{matrix}0.9\\0.117\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}x_{3}\\x_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}0.041&0.16\\-0.002&0.041\end{matrix}\right))\left(\begin{matrix}0.9\\0.117\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରିକ୍ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x_{3}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{0.041}{0.041\times 0.041-0.16\left(-0.002\right)}&-\frac{0.16}{0.041\times 0.041-0.16\left(-0.002\right)}\\-\frac{-0.002}{0.041\times 0.041-0.16\left(-0.002\right)}&\frac{0.041}{0.041\times 0.041-0.16\left(-0.002\right)}\end{matrix}\right)\left(\begin{matrix}0.9\\0.117\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}x_{3}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{41000}{2001}&-\frac{160000}{2001}\\\frac{2000}{2001}&\frac{41000}{2001}\end{matrix}\right)\left(\begin{matrix}0.9\\0.117\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}x_{3}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{41000}{2001}\times 0.9-\frac{160000}{2001}\times 0.117\\\frac{2000}{2001}\times 0.9+\frac{41000}{2001}\times 0.117\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x_{3}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{6060}{667}\\\frac{2199}{667}\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
x_{3}=\frac{6060}{667},x_{2}=\frac{2199}{667}
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ x_{3} ଏବଂ x_{2} ବାହାର କରନ୍ତୁ.
0.041x_{3}+0.16x_{2}=0.9,-0.002x_{3}+0.041x_{2}=0.117
ଭାରିଏବୁଲ୍ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
-0.002\times 0.041x_{3}-0.002\times 0.16x_{2}=-0.002\times 0.9,0.041\left(-0.002\right)x_{3}+0.041\times 0.041x_{2}=0.041\times 0.117
\frac{41x_{3}}{1000} ଏବଂ -\frac{x_{3}}{500} କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ -0.002 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍କୁ 0.041 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
-0.000082x_{3}-0.00032x_{2}=-0.0018,-0.000082x_{3}+0.001681x_{2}=0.004797
ସରଳୀକୃତ କରିବା.
-0.000082x_{3}+0.000082x_{3}-0.00032x_{2}-0.001681x_{2}=-0.0018-0.004797
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା -0.000082x_{3}-0.00032x_{2}=-0.0018 ଠାରୁ -0.000082x_{3}+0.001681x_{2}=0.004797 କୁ ବିୟୋଗ କରନ୍ତୁ.
-0.00032x_{2}-0.001681x_{2}=-0.0018-0.004797
-\frac{41x_{3}}{500000} କୁ \frac{41x_{3}}{500000} ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ -\frac{41x_{3}}{500000} ଏବଂ \frac{41x_{3}}{500000} ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
-0.002001x_{2}=-0.0018-0.004797
-\frac{x_{2}}{3125} କୁ -\frac{1681x_{2}}{1000000} ସହ ଯୋଡନ୍ତୁ.
-0.002001x_{2}=-0.006597
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା -0.004797 ସହିତ -0.0018 ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x_{2}=\frac{2199}{667}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ -0.002001 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
-0.002x_{3}+0.041\times \frac{2199}{667}=0.117
-0.002x_{3}+0.041x_{2}=0.117 ରେ x_{2} ପାଇଁ \frac{2199}{667} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ x_{3} ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
-0.002x_{3}+\frac{90159}{667000}=0.117
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା 0.041 କୁ \frac{2199}{667} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
-0.002x_{3}=-\frac{303}{16675}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{90159}{667000} ବିୟୋଗ କରନ୍ତୁ.
x_{3}=\frac{6060}{667}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -500 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x_{3}=\frac{6060}{667},x_{2}=\frac{2199}{667}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}