ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ଗୁଣକ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

det(\left(\begin{matrix}0&5&4\\5&6&-6\\-2&-3&2\end{matrix}\right))
କର୍ଣ୍ଣ ପଦ୍ଧତି ବ୍ୟବହାର କରି ମ୍ୟାଟ୍ରିକ୍ସର ଡେଟରମିନାଣ୍ଟ ବାହାର କରନ୍ତୁ.
\left(\begin{matrix}0&5&4&0&5\\5&6&-6&5&6\\-2&-3&2&-2&-3\end{matrix}\right)
ପ୍ରଥମ ଦୁଇଟି ସ୍ତମ୍ଭକୁ ଚତୁର୍ଥ ଏବଂ ପଞ୍ଚମ ସ୍ତମ୍ଭ ଭାବେ ଦୋହରାଇବା ଦ୍ୱାରା ମୂଳ ମ୍ୟାଟ୍ରିକ୍ସ ବୃଦ୍ଧି କରନ୍ତୁ.
5\left(-6\right)\left(-2\right)+4\times 5\left(-3\right)=0
ଉପର ବାମ ଏଣ୍ଟ୍ରିରେ ପ୍ରାରମ୍ଭ କରି, କର୍ଣ୍ଣଗୁଡିକ ସହିତ ତଳକୁ ଗୁଣନ କରନ୍ତୁ, ଏବଂ ପରିଣାମାତ୍ମକ ଉତ୍ପାଦଗୁଡିକ ଯୋଡନ୍ତୁ.
-2\times 6\times 4+2\times 5\times 5=2
ନିମ୍ନ ବାମ ଏଣ୍ଟ୍ରିରେ ପ୍ରାରମ୍ଭ କରି, କର୍ଣ୍ଣଗୁଡିକ ସହିତ ତଳକୁ ଗୁଣନ କରନ୍ତୁ, ଏବଂ ପରିଣାମାତ୍ମକ ଉତ୍ପାଦଗୁଡିକ ଯୋଡନ୍ତୁ.
-2
ନିମ୍ନମୁଖୀ କର୍ଣ୍ଣ ଉତ୍ପାଦଗୁଡିକର ସମଷ୍ଟିରୁ ଉର୍ଦ୍ଧ୍ୱମୁଖୀ କର୍ଣ୍ଣ ଉତ୍ପାଦଗୁଡିକର ସମଷ୍ଟି ବିୟୋଗ କରନ୍ତୁ.
det(\left(\begin{matrix}0&5&4\\5&6&-6\\-2&-3&2\end{matrix}\right))
ଗୌଣ ସଂଖ୍ୟାଗୁଡିକ ଦ୍ୱାରା ବିସ୍ତାର ପଦ୍ଧତି ବ୍ୟବହାର କରି ମ୍ୟାଟ୍ରିକ୍ସର ଡେଟରମିନାଣ୍ଟ ବାହାର କରନ୍ତୁ (କୋଫ୍ୟାକ୍ଟରଗୁଡିକ ଦ୍ୱାରା ବିସ୍ତାର ଭାବେ ମଧ୍ୟ ଜଣାଶୁଣା).
-5det(\left(\begin{matrix}5&-6\\-2&2\end{matrix}\right))+4det(\left(\begin{matrix}5&6\\-2&-3\end{matrix}\right))
ଗୌଣ ସଂଖ୍ୟାଗୁଡିକୁ ବୃଦ୍ଧି କରିବାକୁ, ପ୍ରଥମ ଧାଡିର ପ୍ରତିଟି ଉପାଦାନକୁ ଏହାର ଗୌଣ ସଂଖ୍ୟା ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, ଯାହାକି ସେହି ଉପାଦାନ ଧାରଣ କରିଥିବା ଧାଡି ଓ ସ୍ତମ୍ଭକୁ ବିଲୋପ କରିବା ଦ୍ୱାରା ସୃଷ୍ଟି ହୋଇଥିବା 2\times 2 ମ୍ୟାଟ୍ରିକ୍ସର ଡେଟରମିନାଣ୍ଟ ହୋଇଥାଏ, ତାପରେ ଉପାଦାନର ଅବସ୍ଥାନ ଚିହ୍ନ ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
-5\left(5\times 2-\left(-2\left(-6\right)\right)\right)+4\left(5\left(-3\right)-\left(-2\times 6\right)\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ପାଇଁ, ad-bc ହେଉଛି ଡିଟରମିନାଣ୍ଟ.
-5\left(-2\right)+4\left(-3\right)
ସରଳୀକୃତ କରିବା.
-2
ଚୁଡାନ୍ତ ଫଳାଫଳ ହାସଲ କରିବା ପାଇଁ ପଦଗୁଡିକ ଯୋଡନ୍ତୁ.