\left\{ \begin{array} { l } { a + 3 b = 6 } \\ { a - 6 b = 12 } \end{array} \right.
a, b ପାଇଁ ସମାଧାନ କରନ୍ତୁ
a=8
b=-\frac{2}{3}\approx -0.666666667
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
a+3b=6,a-6b=12
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
a+3b=6
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ a କୁ ପୃଥକ୍ କରିବା ଦ୍ୱାରା a ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
a=-3b+6
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 3b ବିୟୋଗ କରନ୍ତୁ.
-3b+6-6b=12
ଅନ୍ୟ ସମୀକରଣ, a-6b=12 ରେ a ସ୍ଥାନରେ -3b+6 ପ୍ରତିବଦଳ କରନ୍ତୁ.
-9b+6=12
-3b କୁ -6b ସହ ଯୋଡନ୍ତୁ.
-9b=6
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 6 ବିୟୋଗ କରନ୍ତୁ.
b=-\frac{2}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -9 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=-3\left(-\frac{2}{3}\right)+6
a=-3b+6 ରେ b ପାଇଁ -\frac{2}{3} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ a ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
a=2+6
-3 କୁ -\frac{2}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
a=8
6 କୁ 2 ସହ ଯୋଡନ୍ତୁ.
a=8,b=-\frac{2}{3}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
a+3b=6,a-6b=12
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}1&3\\1&-6\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}6\\12\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}1&3\\1&-6\end{matrix}\right))\left(\begin{matrix}1&3\\1&-6\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-6\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
\left(\begin{matrix}1&3\\1&-6\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-6\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-6\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରିକ୍ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-6-3}&-\frac{3}{-6-3}\\-\frac{1}{-6-3}&\frac{1}{-6-3}\end{matrix}\right)\left(\begin{matrix}6\\12\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}6\\12\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 6+\frac{1}{3}\times 12\\\frac{1}{9}\times 6-\frac{1}{9}\times 12\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}8\\-\frac{2}{3}\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
a=8,b=-\frac{2}{3}
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ a ଏବଂ b ବାହାର କରନ୍ତୁ.
a+3b=6,a-6b=12
ଭାରିଏବୁଲ୍ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
a-a+3b+6b=6-12
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା a+3b=6 ଠାରୁ a-6b=12 କୁ ବିୟୋଗ କରନ୍ତୁ.
3b+6b=6-12
a କୁ -a ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ a ଏବଂ -a ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
9b=6-12
3b କୁ 6b ସହ ଯୋଡନ୍ତୁ.
9b=-6
6 କୁ -12 ସହ ଯୋଡନ୍ତୁ.
b=-\frac{2}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 9 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a-6\left(-\frac{2}{3}\right)=12
a-6b=12 ରେ b ପାଇଁ -\frac{2}{3} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ a ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
a+4=12
-6 କୁ -\frac{2}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
a=8
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
a=8,b=-\frac{2}{3}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}