\left\{ \begin{array} { l } { 4 ( x + y ) - 3 ( x - y ) = 10 } \\ { 2 ( x + y ) - 3 ( x - y ) = 2 } \end{array} \right.
x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=3
y=1
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
4x+4y-3\left(x-y\right)=10
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. 4 କୁ x+y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x+4y-3x+3y=10
-3 କୁ x-y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x+4y+3y=10
x ପାଇବାକୁ 4x ଏବଂ -3x ସମ୍ମେଳନ କରନ୍ତୁ.
x+7y=10
7y ପାଇବାକୁ 4y ଏବଂ 3y ସମ୍ମେଳନ କରନ୍ତୁ.
2x+2y-3\left(x-y\right)=2
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. 2 କୁ x+y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x+2y-3x+3y=2
-3 କୁ x-y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-x+2y+3y=2
-x ପାଇବାକୁ 2x ଏବଂ -3x ସମ୍ମେଳନ କରନ୍ତୁ.
-x+5y=2
5y ପାଇବାକୁ 2y ଏବଂ 3y ସମ୍ମେଳନ କରନ୍ତୁ.
x+7y=10,-x+5y=2
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
x+7y=10
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x କୁ ପୃଥକ୍ କରିବା ଦ୍ୱାରା x ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
x=-7y+10
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 7y ବିୟୋଗ କରନ୍ତୁ.
-\left(-7y+10\right)+5y=2
ଅନ୍ୟ ସମୀକରଣ, -x+5y=2 ରେ x ସ୍ଥାନରେ -7y+10 ପ୍ରତିବଦଳ କରନ୍ତୁ.
7y-10+5y=2
-1 କୁ -7y+10 ଥର ଗୁଣନ କରନ୍ତୁ.
12y-10=2
7y କୁ 5y ସହ ଯୋଡନ୍ତୁ.
12y=12
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 10 ଯୋଡନ୍ତୁ.
y=1
ଉଭୟ ପାର୍ଶ୍ୱକୁ 12 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-7+10
x=-7y+10 ରେ y ପାଇଁ 1 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=3
10 କୁ -7 ସହ ଯୋଡନ୍ତୁ.
x=3,y=1
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
4x+4y-3\left(x-y\right)=10
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. 4 କୁ x+y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x+4y-3x+3y=10
-3 କୁ x-y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x+4y+3y=10
x ପାଇବାକୁ 4x ଏବଂ -3x ସମ୍ମେଳନ କରନ୍ତୁ.
x+7y=10
7y ପାଇବାକୁ 4y ଏବଂ 3y ସମ୍ମେଳନ କରନ୍ତୁ.
2x+2y-3\left(x-y\right)=2
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. 2 କୁ x+y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x+2y-3x+3y=2
-3 କୁ x-y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-x+2y+3y=2
-x ପାଇବାକୁ 2x ଏବଂ -3x ସମ୍ମେଳନ କରନ୍ତୁ.
-x+5y=2
5y ପାଇବାକୁ 2y ଏବଂ 3y ସମ୍ମେଳନ କରନ୍ତୁ.
x+7y=10,-x+5y=2
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}1&7\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\2\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}1&7\\-1&5\end{matrix}\right))\left(\begin{matrix}1&7\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&7\\-1&5\end{matrix}\right))\left(\begin{matrix}10\\2\end{matrix}\right)
\left(\begin{matrix}1&7\\-1&5\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&7\\-1&5\end{matrix}\right))\left(\begin{matrix}10\\2\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&7\\-1&5\end{matrix}\right))\left(\begin{matrix}10\\2\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରିକ୍ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-7\left(-1\right)}&-\frac{7}{5-7\left(-1\right)}\\-\frac{-1}{5-7\left(-1\right)}&\frac{1}{5-7\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}10\\2\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{12}&-\frac{7}{12}\\\frac{1}{12}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}10\\2\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{12}\times 10-\frac{7}{12}\times 2\\\frac{1}{12}\times 10+\frac{1}{12}\times 2\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
x=3,y=1
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ x ଏବଂ y ବାହାର କରନ୍ତୁ.
4x+4y-3\left(x-y\right)=10
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. 4 କୁ x+y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x+4y-3x+3y=10
-3 କୁ x-y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x+4y+3y=10
x ପାଇବାକୁ 4x ଏବଂ -3x ସମ୍ମେଳନ କରନ୍ତୁ.
x+7y=10
7y ପାଇବାକୁ 4y ଏବଂ 3y ସମ୍ମେଳନ କରନ୍ତୁ.
2x+2y-3\left(x-y\right)=2
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. 2 କୁ x+y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x+2y-3x+3y=2
-3 କୁ x-y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-x+2y+3y=2
-x ପାଇବାକୁ 2x ଏବଂ -3x ସମ୍ମେଳନ କରନ୍ତୁ.
-x+5y=2
5y ପାଇବାକୁ 2y ଏବଂ 3y ସମ୍ମେଳନ କରନ୍ତୁ.
x+7y=10,-x+5y=2
ଭାରିଏବୁଲ୍ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
-x-7y=-10,-x+5y=2
x ଏବଂ -x କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ -1 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍କୁ 1 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
-x+x-7y-5y=-10-2
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା -x-7y=-10 ଠାରୁ -x+5y=2 କୁ ବିୟୋଗ କରନ୍ତୁ.
-7y-5y=-10-2
-x କୁ x ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ -x ଏବଂ x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
-12y=-10-2
-7y କୁ -5y ସହ ଯୋଡନ୍ତୁ.
-12y=-12
-10 କୁ -2 ସହ ଯୋଡନ୍ତୁ.
y=1
ଉଭୟ ପାର୍ଶ୍ୱକୁ -12 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
-x+5=2
-x+5y=2 ରେ y ପାଇଁ 1 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
-x=-3
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
x=3
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=3,y=1
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}