ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2x+3y=18-n,4x-y=5n+1.6
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍‌ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍‌ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍‌ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
2x+3y=18-n
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x କୁ ପୃଥକ୍‌ କରିବା ଦ୍ୱାରା x ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
2x=-3y+18-n
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 3y ବିୟୋଗ କରନ୍ତୁ.
x=\frac{1}{2}\left(-3y+18-n\right)
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{3}{2}y-\frac{n}{2}+9
\frac{1}{2} କୁ -3y+18-n ଥର ଗୁଣନ କରନ୍ତୁ.
4\left(-\frac{3}{2}y-\frac{n}{2}+9\right)-y=5n+1.6
ଅନ୍ୟ ସମୀକରଣ, 4x-y=5n+1.6 ରେ x ସ୍ଥାନରେ -\frac{3y}{2}+9-\frac{n}{2} ପ୍ରତିବଦଳ କରନ୍ତୁ.
-6y+36-2n-y=5n+1.6
4 କୁ -\frac{3y}{2}+9-\frac{n}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
-7y+36-2n=5n+1.6
-6y କୁ -y ସହ ଯୋଡନ୍ତୁ.
-7y=7n-34.4
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 36-2n ବିୟୋଗ କରନ୍ତୁ.
y=\frac{172}{35}-n
ଉଭୟ ପାର୍ଶ୍ୱକୁ -7 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{3}{2}\left(\frac{172}{35}-n\right)-\frac{n}{2}+9
x=-\frac{3}{2}y-\frac{n}{2}+9 ରେ y ପାଇଁ -n+\frac{172}{35} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=\frac{3n}{2}-\frac{258}{35}-\frac{n}{2}+9
-\frac{3}{2} କୁ -n+\frac{172}{35} ଥର ଗୁଣନ କରନ୍ତୁ.
x=n+\frac{57}{35}
9-\frac{n}{2} କୁ \frac{3n}{2}-\frac{258}{35} ସହ ଯୋଡନ୍ତୁ.
x=n+\frac{57}{35},y=\frac{172}{35}-n
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.
2x+3y=18-n,4x-y=5n+1.6
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍‌ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}2&3\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18-n\\5n+1.6\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}2&3\\4&-1\end{matrix}\right))\left(\begin{matrix}2&3\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-1\end{matrix}\right))\left(\begin{matrix}18-n\\5n+1.6\end{matrix}\right)
\left(\begin{matrix}2&3\\4&-1\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-1\end{matrix}\right))\left(\begin{matrix}18-n\\5n+1.6\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍‌ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-1\end{matrix}\right))\left(\begin{matrix}18-n\\5n+1.6\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରି‌କ୍‌ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-3\times 4}&-\frac{3}{2\left(-1\right)-3\times 4}\\-\frac{4}{2\left(-1\right)-3\times 4}&\frac{2}{2\left(-1\right)-3\times 4}\end{matrix}\right)\left(\begin{matrix}18-n\\5n+1.6\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}&\frac{3}{14}\\\frac{2}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}18-n\\5n+1.6\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}\left(18-n\right)+\frac{3}{14}\left(5n+1.6\right)\\\frac{2}{7}\left(18-n\right)-\frac{1}{7}\left(5n+1.6\right)\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}n+\frac{57}{35}\\\frac{172}{35}-n\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
x=n+\frac{57}{35},y=\frac{172}{35}-n
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ x ଏବଂ y ବାହାର କରନ୍ତୁ.
2x+3y=18-n,4x-y=5n+1.6
ଭାରିଏବୁଲ୍‌ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍‌ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍‌ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
4\times 2x+4\times 3y=4\left(18-n\right),2\times 4x+2\left(-1\right)y=2\left(5n+1.6\right)
2x ଏବଂ 4x କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍‌କୁ 2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
8x+12y=72-4n,8x-2y=10n+3.2
ସରଳୀକୃତ କରିବା.
8x-8x+12y+2y=72-4n-10n-3.2
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା 8x+12y=72-4n ଠାରୁ 8x-2y=10n+3.2 କୁ ବିୟୋଗ କରନ୍ତୁ.
12y+2y=72-4n-10n-3.2
8x କୁ -8x ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ 8x ଏବଂ -8x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
14y=72-4n-10n-3.2
12y କୁ 2y ସହ ଯୋଡନ୍ତୁ.
14y=68.8-14n
72-4n କୁ -10n-3.2 ସହ ଯୋଡନ୍ତୁ.
y=\frac{172}{35}-n
ଉଭୟ ପାର୍ଶ୍ୱକୁ 14 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
4x-\left(\frac{172}{35}-n\right)=5n+1.6
4x-y=5n+1.6 ରେ y ପାଇଁ \frac{172}{35}-n କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
4x=4n+\frac{228}{35}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ -\frac{172}{35}+n ବିୟୋଗ କରନ୍ତୁ.
x=n+\frac{57}{35}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=n+\frac{57}{35},y=\frac{172}{35}-n
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.