\left\{ \begin{array} { l } { ( x - 2 ) ^ { 2 } - 2 ( x - 2 y ) = 1 - ( 3 - x ) ( 3 + x ) } \\ { 2 x + y = 4 } \end{array} \right.
x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=2
y=0
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
x^{2}-4x+4-2\left(x-2y\right)=1-\left(3-x\right)\left(3+x\right)
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. \left(x-2\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-4x+4-2x+4y=1-\left(3-x\right)\left(3+x\right)
-2 କୁ x-2y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-6x+4+4y=1-\left(3-x\right)\left(3+x\right)
-6x ପାଇବାକୁ -4x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-6x+4+4y=1-\left(9-x^{2}\right)
\left(3-x\right)\left(3+x\right)କୁ ବିବେଚନା କରନ୍ତୁ. ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ. ବର୍ଗ 3.
x^{2}-6x+4+4y=1-9+x^{2}
9-x^{2} ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
x^{2}-6x+4+4y=-8+x^{2}
-8 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 9 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-6x+4+4y-x^{2}=-8
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
-6x+4+4y=-8
0 ପାଇବାକୁ x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
-6x+4y=-8-4
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
-6x+4y=-12
-12 ପ୍ରାପ୍ତ କରିବାକୁ -8 ଏବଂ 4 ବିୟୋଗ କରନ୍ତୁ.
-6x+4y=-12,2x+y=4
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
-6x+4y=-12
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x କୁ ପୃଥକ୍ କରିବା ଦ୍ୱାରା x ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
-6x=-4y-12
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 4y ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{1}{6}\left(-4y-12\right)
ଉଭୟ ପାର୍ଶ୍ୱକୁ -6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{2}{3}y+2
-\frac{1}{6} କୁ -4y-12 ଥର ଗୁଣନ କରନ୍ତୁ.
2\left(\frac{2}{3}y+2\right)+y=4
ଅନ୍ୟ ସମୀକରଣ, 2x+y=4 ରେ x ସ୍ଥାନରେ \frac{2y}{3}+2 ପ୍ରତିବଦଳ କରନ୍ତୁ.
\frac{4}{3}y+4+y=4
2 କୁ \frac{2y}{3}+2 ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{7}{3}y+4=4
\frac{4y}{3} କୁ y ସହ ଯୋଡନ୍ତୁ.
\frac{7}{3}y=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
y=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \frac{7}{3} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
x=2
x=\frac{2}{3}y+2 ରେ y ପାଇଁ 0 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=2,y=0
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
x^{2}-4x+4-2\left(x-2y\right)=1-\left(3-x\right)\left(3+x\right)
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. \left(x-2\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-4x+4-2x+4y=1-\left(3-x\right)\left(3+x\right)
-2 କୁ x-2y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-6x+4+4y=1-\left(3-x\right)\left(3+x\right)
-6x ପାଇବାକୁ -4x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-6x+4+4y=1-\left(9-x^{2}\right)
\left(3-x\right)\left(3+x\right)କୁ ବିବେଚନା କରନ୍ତୁ. ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ. ବର୍ଗ 3.
x^{2}-6x+4+4y=1-9+x^{2}
9-x^{2} ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
x^{2}-6x+4+4y=-8+x^{2}
-8 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 9 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-6x+4+4y-x^{2}=-8
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
-6x+4+4y=-8
0 ପାଇବାକୁ x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
-6x+4y=-8-4
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
-6x+4y=-12
-12 ପ୍ରାପ୍ତ କରିବାକୁ -8 ଏବଂ 4 ବିୟୋଗ କରନ୍ତୁ.
-6x+4y=-12,2x+y=4
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}-6&4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-12\\4\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}-6&4\\2&1\end{matrix}\right))\left(\begin{matrix}-6&4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&4\\2&1\end{matrix}\right))\left(\begin{matrix}-12\\4\end{matrix}\right)
\left(\begin{matrix}-6&4\\2&1\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&4\\2&1\end{matrix}\right))\left(\begin{matrix}-12\\4\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&4\\2&1\end{matrix}\right))\left(\begin{matrix}-12\\4\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରିକ୍ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-6-4\times 2}&-\frac{4}{-6-4\times 2}\\-\frac{2}{-6-4\times 2}&-\frac{6}{-6-4\times 2}\end{matrix}\right)\left(\begin{matrix}-12\\4\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}&\frac{2}{7}\\\frac{1}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}-12\\4\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}\left(-12\right)+\frac{2}{7}\times 4\\\frac{1}{7}\left(-12\right)+\frac{3}{7}\times 4\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
x=2,y=0
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ x ଏବଂ y ବାହାର କରନ୍ତୁ.
x^{2}-4x+4-2\left(x-2y\right)=1-\left(3-x\right)\left(3+x\right)
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. \left(x-2\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-4x+4-2x+4y=1-\left(3-x\right)\left(3+x\right)
-2 କୁ x-2y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-6x+4+4y=1-\left(3-x\right)\left(3+x\right)
-6x ପାଇବାକୁ -4x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-6x+4+4y=1-\left(9-x^{2}\right)
\left(3-x\right)\left(3+x\right)କୁ ବିବେଚନା କରନ୍ତୁ. ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ. ବର୍ଗ 3.
x^{2}-6x+4+4y=1-9+x^{2}
9-x^{2} ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
x^{2}-6x+4+4y=-8+x^{2}
-8 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 9 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-6x+4+4y-x^{2}=-8
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
-6x+4+4y=-8
0 ପାଇବାକୁ x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
-6x+4y=-8-4
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
-6x+4y=-12
-12 ପ୍ରାପ୍ତ କରିବାକୁ -8 ଏବଂ 4 ବିୟୋଗ କରନ୍ତୁ.
-6x+4y=-12,2x+y=4
ଭାରିଏବୁଲ୍ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
2\left(-6\right)x+2\times 4y=2\left(-12\right),-6\times 2x-6y=-6\times 4
-6x ଏବଂ 2x କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ 2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍କୁ -6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
-12x+8y=-24,-12x-6y=-24
ସରଳୀକୃତ କରିବା.
-12x+12x+8y+6y=-24+24
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା -12x+8y=-24 ଠାରୁ -12x-6y=-24 କୁ ବିୟୋଗ କରନ୍ତୁ.
8y+6y=-24+24
-12x କୁ 12x ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ -12x ଏବଂ 12x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
14y=-24+24
8y କୁ 6y ସହ ଯୋଡନ୍ତୁ.
14y=0
-24 କୁ 24 ସହ ଯୋଡନ୍ତୁ.
y=0
ଉଭୟ ପାର୍ଶ୍ୱକୁ 14 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
2x=4
2x+y=4 ରେ y ପାଇଁ 0 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=2
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=2,y=0
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}