ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

3\left(x-y\right)-2y=6
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 2,3 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
3x-3y-2y=6
3 କୁ x-y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x-5y=6
-5y ପାଇବାକୁ -3y ଏବଂ -2y ସମ୍ମେଳନ କରନ୍ତୁ.
x+\frac{1}{2}y=y
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. x+\frac{1}{2}y ପ୍ରାପ୍ତ କରିବାକୁ 2x+y ର ପ୍ରତିଟି ପଦକୁ 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
x+\frac{1}{2}y-y=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ y ବିୟୋଗ କରନ୍ତୁ.
x-\frac{1}{2}y=0
-\frac{1}{2}y ପାଇବାକୁ \frac{1}{2}y ଏବଂ -y ସମ୍ମେଳନ କରନ୍ତୁ.
3x-5y=6,x-\frac{1}{2}y=0
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍‌ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍‌ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍‌ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
3x-5y=6
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x କୁ ପୃଥକ୍‌ କରିବା ଦ୍ୱାରା x ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
3x=5y+6
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 5y ଯୋଡନ୍ତୁ.
x=\frac{1}{3}\left(5y+6\right)
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{5}{3}y+2
\frac{1}{3} କୁ 5y+6 ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{5}{3}y+2-\frac{1}{2}y=0
ଅନ୍ୟ ସମୀକରଣ, x-\frac{1}{2}y=0 ରେ x ସ୍ଥାନରେ \frac{5y}{3}+2 ପ୍ରତିବଦଳ କରନ୍ତୁ.
\frac{7}{6}y+2=0
\frac{5y}{3} କୁ -\frac{y}{2} ସହ ଯୋଡନ୍ତୁ.
\frac{7}{6}y=-2
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
y=-\frac{12}{7}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \frac{7}{6} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
x=\frac{5}{3}\left(-\frac{12}{7}\right)+2
x=\frac{5}{3}y+2 ରେ y ପାଇଁ -\frac{12}{7} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=-\frac{20}{7}+2
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{5}{3} କୁ -\frac{12}{7} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=-\frac{6}{7}
2 କୁ -\frac{20}{7} ସହ ଯୋଡନ୍ତୁ.
x=-\frac{6}{7},y=-\frac{12}{7}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.
3\left(x-y\right)-2y=6
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 2,3 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
3x-3y-2y=6
3 କୁ x-y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x-5y=6
-5y ପାଇବାକୁ -3y ଏବଂ -2y ସମ୍ମେଳନ କରନ୍ତୁ.
x+\frac{1}{2}y=y
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. x+\frac{1}{2}y ପ୍ରାପ୍ତ କରିବାକୁ 2x+y ର ପ୍ରତିଟି ପଦକୁ 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
x+\frac{1}{2}y-y=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ y ବିୟୋଗ କରନ୍ତୁ.
x-\frac{1}{2}y=0
-\frac{1}{2}y ପାଇବାକୁ \frac{1}{2}y ଏବଂ -y ସମ୍ମେଳନ କରନ୍ତୁ.
3x-5y=6,x-\frac{1}{2}y=0
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍‌ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}3&-5\\1&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\0\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}3&-5\\1&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}3&-5\\1&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\1&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
\left(\begin{matrix}3&-5\\1&-\frac{1}{2}\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\1&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍‌ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\1&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରି‌କ୍‌ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{2}}{3\left(-\frac{1}{2}\right)-\left(-5\right)}&-\frac{-5}{3\left(-\frac{1}{2}\right)-\left(-5\right)}\\-\frac{1}{3\left(-\frac{1}{2}\right)-\left(-5\right)}&\frac{3}{3\left(-\frac{1}{2}\right)-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}6\\0\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&\frac{10}{7}\\-\frac{2}{7}&\frac{6}{7}\end{matrix}\right)\left(\begin{matrix}6\\0\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}\times 6\\-\frac{2}{7}\times 6\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{7}\\-\frac{12}{7}\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
x=-\frac{6}{7},y=-\frac{12}{7}
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ x ଏବଂ y ବାହାର କରନ୍ତୁ.
3\left(x-y\right)-2y=6
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 2,3 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
3x-3y-2y=6
3 କୁ x-y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x-5y=6
-5y ପାଇବାକୁ -3y ଏବଂ -2y ସମ୍ମେଳନ କରନ୍ତୁ.
x+\frac{1}{2}y=y
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. x+\frac{1}{2}y ପ୍ରାପ୍ତ କରିବାକୁ 2x+y ର ପ୍ରତିଟି ପଦକୁ 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
x+\frac{1}{2}y-y=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ y ବିୟୋଗ କରନ୍ତୁ.
x-\frac{1}{2}y=0
-\frac{1}{2}y ପାଇବାକୁ \frac{1}{2}y ଏବଂ -y ସମ୍ମେଳନ କରନ୍ତୁ.
3x-5y=6,x-\frac{1}{2}y=0
ଭାରିଏବୁଲ୍‌ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍‌ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍‌ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
3x-5y=6,3x+3\left(-\frac{1}{2}\right)y=0
3x ଏବଂ x କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ 1 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍‌କୁ 3 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
3x-5y=6,3x-\frac{3}{2}y=0
ସରଳୀକୃତ କରିବା.
3x-3x-5y+\frac{3}{2}y=6
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା 3x-5y=6 ଠାରୁ 3x-\frac{3}{2}y=0 କୁ ବିୟୋଗ କରନ୍ତୁ.
-5y+\frac{3}{2}y=6
3x କୁ -3x ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ 3x ଏବଂ -3x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
-\frac{7}{2}y=6
-5y କୁ \frac{3y}{2} ସହ ଯୋଡନ୍ତୁ.
y=-\frac{12}{7}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ -\frac{7}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
x-\frac{1}{2}\left(-\frac{12}{7}\right)=0
x-\frac{1}{2}y=0 ରେ y ପାଇଁ -\frac{12}{7} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x+\frac{6}{7}=0
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା -\frac{1}{2} କୁ -\frac{12}{7} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=-\frac{6}{7}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{6}{7} ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{6}{7},y=-\frac{12}{7}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.