ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\int \frac{1}{\sqrt{x}}-3x+5\mathrm{d}x
ପ୍ରଥମେ ଅନିର୍ଦ୍ଦିଷ୍ଟ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ର ମୂଲ୍ୟାଙ୍କନ କରନ୍ତୁ।
\int \frac{1}{\sqrt{x}}\mathrm{d}x+\int -3x\mathrm{d}x+\int 5\mathrm{d}x
ସମଷ୍ଟିକୁ ପଦରେ ପଦ ଏକତ୍ର କରନ୍ତୁ
\int \frac{1}{\sqrt{x}}\mathrm{d}x-3\int x\mathrm{d}x+\int 5\mathrm{d}x
ପ୍ରତ୍ୟେକ ପଦରେ ସ୍ଥିରାଙ୍କର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ।
2\sqrt{x}-3\int x\mathrm{d}x+\int 5\mathrm{d}x
x^{-\frac{1}{2}} ଭାବରେ \frac{1}{\sqrt{x}} ପୁନଃ ଲେଖନ୍ତୁ. ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{-\frac{1}{2}}\mathrm{d}xକୁ \frac{x^{\frac{1}{2}}}{\frac{1}{2}}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। ଘାତାଙ୍କୀରୁ ରାଡ଼ିକାଲ୍‍‌କୁ ସରଳୀକୃତ ଏବଂ ରୂପାନ୍ତର କରନ୍ତୁ।
2\sqrt{x}-\frac{3x^{2}}{2}+\int 5\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x\mathrm{d}xକୁ \frac{x^{2}}{2}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। -3 କୁ \frac{x^{2}}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
2\sqrt{x}-\frac{3x^{2}}{2}+5x
ସାଧାରଣ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ ନିୟମର ସାରଣୀ \int a\mathrm{d}x=ax ବ୍ୟବହାର କରି 5ର ଇଣ୍ଟିଗ୍ରାଲ୍ ଖୋଜନ୍ତୁ।
2\times 8^{\frac{1}{2}}-\frac{3}{2}\times 8^{2}+5\times 8-\left(2\times 1^{\frac{1}{2}}-\frac{3}{2}\times 1^{2}+5\times 1\right)
ନିର୍ଦ୍ଦିଷ୍ଟ ସମାକଳ, ପ୍ରତିଅବକଳଜର ଏପରି ବ୍ୟାଖ୍ୟା ଯାହା ଇଣ୍ଟିଗ୍ରେସନ୍‍‌ର ଉଚ୍ଚତର ସୀମା ବିଯୁକ୍ତ ନିମ୍ନତର ସୀମାରେ ମୂଲ୍ୟାଙ୍କିତ କରାଯାଇଛି।
4\sqrt{2}-\frac{123}{2}
ସରଳୀକୃତ କରିବା.