ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\left(x-4\right)\times 4-\left(x-2\right)\left(x-3\right)=0
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ 2,4 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-4\right)\left(x-2\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x-2,x-4 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
4x-16-\left(x-2\right)\left(x-3\right)=0
x-4 କୁ 4 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x-16-\left(x^{2}-5x+6\right)=0
x-2 କୁ x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
4x-16-x^{2}+5x-6=0
x^{2}-5x+6 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
9x-16-x^{2}-6=0
9x ପାଇବାକୁ 4x ଏବଂ 5x ସମ୍ମେଳନ କରନ୍ତୁ.
9x-22-x^{2}=0
-22 ପ୍ରାପ୍ତ କରିବାକୁ -16 ଏବଂ 6 ବିୟୋଗ କରନ୍ତୁ.
-x^{2}+9x-22=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\left(-22\right)}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ 9, ଏବଂ c ପାଇଁ -22 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-9±\sqrt{81-4\left(-1\right)\left(-22\right)}}{2\left(-1\right)}
ବର୍ଗ 9.
x=\frac{-9±\sqrt{81+4\left(-22\right)}}{2\left(-1\right)}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-9±\sqrt{81-88}}{2\left(-1\right)}
4 କୁ -22 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-9±\sqrt{-7}}{2\left(-1\right)}
81 କୁ -88 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-9±\sqrt{7}i}{2\left(-1\right)}
-7 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-9±\sqrt{7}i}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-9+\sqrt{7}i}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-9±\sqrt{7}i}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -9 କୁ i\sqrt{7} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\sqrt{7}i+9}{2}
-9+i\sqrt{7} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-\sqrt{7}i-9}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-9±\sqrt{7}i}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -9 ରୁ i\sqrt{7} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{9+\sqrt{7}i}{2}
-9-i\sqrt{7} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-\sqrt{7}i+9}{2} x=\frac{9+\sqrt{7}i}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
\left(x-4\right)\times 4-\left(x-2\right)\left(x-3\right)=0
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ 2,4 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-4\right)\left(x-2\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x-2,x-4 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
4x-16-\left(x-2\right)\left(x-3\right)=0
x-4 କୁ 4 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x-16-\left(x^{2}-5x+6\right)=0
x-2 କୁ x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
4x-16-x^{2}+5x-6=0
x^{2}-5x+6 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
9x-16-x^{2}-6=0
9x ପାଇବାକୁ 4x ଏବଂ 5x ସମ୍ମେଳନ କରନ୍ତୁ.
9x-22-x^{2}=0
-22 ପ୍ରାପ୍ତ କରିବାକୁ -16 ଏବଂ 6 ବିୟୋଗ କରନ୍ତୁ.
9x-x^{2}=22
ଉଭୟ ପାର୍ଶ୍ଵକୁ 22 ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
-x^{2}+9x=22
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-x^{2}+9x}{-1}=\frac{22}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{9}{-1}x=\frac{22}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-9x=\frac{22}{-1}
9 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-9x=-22
22 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-22+\left(-\frac{9}{2}\right)^{2}
-\frac{9}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -9 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{9}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-9x+\frac{81}{4}=-22+\frac{81}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{9}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-9x+\frac{81}{4}=-\frac{7}{4}
-22 କୁ \frac{81}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{9}{2}\right)^{2}=-\frac{7}{4}
ଗୁଣନୀୟକ x^{2}-9x+\frac{81}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{-\frac{7}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{9}{2}=\frac{\sqrt{7}i}{2} x-\frac{9}{2}=-\frac{\sqrt{7}i}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{9+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i+9}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{9}{2} ଯୋଡନ୍ତୁ.