ମୂଲ୍ୟାୟନ କରିବା
\frac{3}{5}+\frac{6}{5}i=0.6+1.2i
ପ୍ରକୃତ ଅଂଶ
\frac{3}{5} = 0.6
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{\left(-3-3i\right)\left(-3-i\right)}{\left(-3+i\right)\left(-3-i\right)}
ହର, -3-i ର ଜଟିଳ ମିଶ୍ରଣ ଦ୍ୱାରା ଉଭୟ ଲବ ଓ ହରକୁ ଗୁଣନ କରନ୍ତୁ.
\frac{\left(-3-3i\right)\left(-3-i\right)}{\left(-3\right)^{2}-i^{2}}
ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ.
\frac{\left(-3-3i\right)\left(-3-i\right)}{10}
ସଂଜ୍ଞା ଦ୍ୱାରା, i^{2} ହେଉଛି -1. ହର ହିସାବ କରନ୍ତୁ.
\frac{-3\left(-3\right)-3\left(-i\right)-3i\left(-3\right)-3\left(-1\right)i^{2}}{10}
ଜଟିଳ ସଂଖ୍ୟାଗୁଡିକ -3-3i ଏବଂ -3-i କୁ ଗୁଣନ୍ତୁ ଯେପରି ଆପଣ ଆପଣ ବାଇନମିଆଲ୍ଗୁଡିକ ଗୁଣନ କରନ୍ତି.
\frac{-3\left(-3\right)-3\left(-i\right)-3i\left(-3\right)-3\left(-1\right)\left(-1\right)}{10}
ସଂଜ୍ଞା ଦ୍ୱାରା, i^{2} ହେଉଛି -1.
\frac{9+3i+9i-3}{10}
-3\left(-3\right)-3\left(-i\right)-3i\left(-3\right)-3\left(-1\right)\left(-1\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{9-3+\left(3+9\right)i}{10}
ବାସ୍ତବ ଏବଂ ଅବାସ୍ତବ ଅଂଶଗୁଡିକ 9+3i+9i-3 ରେ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{6+12i}{10}
9-3+\left(3+9\right)i ରେ ଯୋଗଗୁଡିକ କରନ୍ତୁ.
\frac{3}{5}+\frac{6}{5}i
\frac{3}{5}+\frac{6}{5}i ପ୍ରାପ୍ତ କରିବାକୁ 6+12i କୁ 10 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
Re(\frac{\left(-3-3i\right)\left(-3-i\right)}{\left(-3+i\right)\left(-3-i\right)})
\frac{-3-3i}{-3+i} ର ହରର ଜଟିଳ ମିଶ୍ରଣ ଦ୍ୱାରା ଉଭୟ ଲବ ଓ ହରକୁ ଗୁଣନ କରନ୍ତୁ, -3-i.
Re(\frac{\left(-3-3i\right)\left(-3-i\right)}{\left(-3\right)^{2}-i^{2}})
ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ.
Re(\frac{\left(-3-3i\right)\left(-3-i\right)}{10})
ସଂଜ୍ଞା ଦ୍ୱାରା, i^{2} ହେଉଛି -1. ହର ହିସାବ କରନ୍ତୁ.
Re(\frac{-3\left(-3\right)-3\left(-i\right)-3i\left(-3\right)-3\left(-1\right)i^{2}}{10})
ଜଟିଳ ସଂଖ୍ୟାଗୁଡିକ -3-3i ଏବଂ -3-i କୁ ଗୁଣନ୍ତୁ ଯେପରି ଆପଣ ଆପଣ ବାଇନମିଆଲ୍ଗୁଡିକ ଗୁଣନ କରନ୍ତି.
Re(\frac{-3\left(-3\right)-3\left(-i\right)-3i\left(-3\right)-3\left(-1\right)\left(-1\right)}{10})
ସଂଜ୍ଞା ଦ୍ୱାରା, i^{2} ହେଉଛି -1.
Re(\frac{9+3i+9i-3}{10})
-3\left(-3\right)-3\left(-i\right)-3i\left(-3\right)-3\left(-1\right)\left(-1\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
Re(\frac{9-3+\left(3+9\right)i}{10})
ବାସ୍ତବ ଏବଂ ଅବାସ୍ତବ ଅଂଶଗୁଡିକ 9+3i+9i-3 ରେ ସମ୍ମେଳନ କରନ୍ତୁ.
Re(\frac{6+12i}{10})
9-3+\left(3+9\right)i ରେ ଯୋଗଗୁଡିକ କରନ୍ତୁ.
Re(\frac{3}{5}+\frac{6}{5}i)
\frac{3}{5}+\frac{6}{5}i ପ୍ରାପ୍ତ କରିବାକୁ 6+12i କୁ 10 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
\frac{3}{5}
\frac{3}{5}+\frac{6}{5}i ର ବାସ୍ତବ ଅଂଶ ହେଉଛି \frac{3}{5}.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}