a ପାଇଁ ସମାଧାନ କରନ୍ତୁ
a=\frac{b\left(b+1\right)}{2}
b\neq -1\text{ and }b\neq 0
b ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
b=\frac{-\sqrt{8a+1}-1}{2}
b=\frac{\sqrt{8a+1}-1}{2}\text{, }a\neq 0
b ପାଇଁ ସମାଧାନ କରନ୍ତୁ
b=\frac{-\sqrt{8a+1}-1}{2}
b=\frac{\sqrt{8a+1}-1}{2}\text{, }a\neq 0\text{ and }a\geq -\frac{1}{8}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
a\left(a+1\right)=a\left(a-1\right)+b\left(b+1\right)
ଭାରିଏବୁଲ୍ a 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ ab ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, b,a ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
a^{2}+a=a\left(a-1\right)+b\left(b+1\right)
a କୁ a+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
a^{2}+a=a^{2}-a+b\left(b+1\right)
a କୁ a-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
a^{2}+a=a^{2}-a+b^{2}+b
b କୁ b+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
a^{2}+a-a^{2}=-a+b^{2}+b
ଉଭୟ ପାର୍ଶ୍ୱରୁ a^{2} ବିୟୋଗ କରନ୍ତୁ.
a=-a+b^{2}+b
0 ପାଇବାକୁ a^{2} ଏବଂ -a^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
a+a=b^{2}+b
ଉଭୟ ପାର୍ଶ୍ଵକୁ a ଯୋଡନ୍ତୁ.
2a=b^{2}+b
2a ପାଇବାକୁ a ଏବଂ a ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{2a}{2}=\frac{b\left(b+1\right)}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=\frac{b\left(b+1\right)}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
a=\frac{b\left(b+1\right)}{2}\text{, }a\neq 0
ଭାରିଏବୁଲ୍ a 0 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}