ମୂଲ୍ୟାୟନ କରିବା
\frac{17}{24}\approx 0.708333333
ଗୁଣକ
\frac{17}{2 ^ {3} \cdot 3} = 0.7083333333333334
କ୍ୱିଜ୍
Arithmetic
5 ଟି ପ୍ରଶ୍ନ ଏହି ପରି ଅଟେ:
\frac { 5 } { 8 } + \frac { 3 } { 20 } + \frac { - 1 } { 15 }
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{25}{40}+\frac{6}{40}+\frac{-1}{15}
8 ଏବଂ 20 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 40. \frac{5}{8} ଏବଂ \frac{3}{20} କୁ 40 ହର ଥିବା ଭଗ୍ନାଂଶକୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{25+6}{40}+\frac{-1}{15}
ଯେହେତୁ \frac{25}{40} ଏବଂ \frac{6}{40} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{31}{40}+\frac{-1}{15}
31 ପ୍ରାପ୍ତ କରିବାକୁ 25 ଏବଂ 6 ଯୋଗ କରନ୍ତୁ.
\frac{31}{40}-\frac{1}{15}
ଋଣାତ୍ମକ ଚିହ୍ନକୁ କାଢିଦେବା ଦ୍ୱାରା ଭଗ୍ନାଂଶ \frac{-1}{15} କୁ -\frac{1}{15} ଭାବେ ପୁଣି ଲେଖାଯାଇପାରିବ.
\frac{93}{120}-\frac{8}{120}
40 ଏବଂ 15 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 120. \frac{31}{40} ଏବଂ \frac{1}{15} କୁ 120 ହର ଥିବା ଭଗ୍ନାଂଶକୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{93-8}{120}
ଯେହେତୁ \frac{93}{120} ଏବଂ \frac{8}{120} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{85}{120}
85 ପ୍ରାପ୍ତ କରିବାକୁ 93 ଏବଂ 8 ବିୟୋଗ କରନ୍ତୁ.
\frac{17}{24}
5 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{85}{120} ହ୍ରାସ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}