b ପାଇଁ ସମାଧାନ କରନ୍ତୁ
b=\frac{3}{5}=0.6
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(b-3\right)\times 3+2b\times 2b=4b\left(b-3\right)
ଭାରିଏବୁଲ୍ b ମୂଲ୍ୟଗୁଡିକ 0,3 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 2b\left(b-3\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 2b,b-3 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
\left(b-3\right)\times 3+\left(2b\right)^{2}=4b\left(b-3\right)
\left(2b\right)^{2} ପ୍ରାପ୍ତ କରିବାକୁ 2b ଏବଂ 2b ଗୁଣନ କରନ୍ତୁ.
3b-9+\left(2b\right)^{2}=4b\left(b-3\right)
b-3 କୁ 3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3b-9+2^{2}b^{2}=4b\left(b-3\right)
ବିସ୍ତାର କରନ୍ତୁ \left(2b\right)^{2}.
3b-9+4b^{2}=4b\left(b-3\right)
2 ର 2 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 4 ପ୍ରାପ୍ତ କରନ୍ତୁ.
3b-9+4b^{2}=4b^{2}-12b
4b କୁ b-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3b-9+4b^{2}-4b^{2}=-12b
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4b^{2} ବିୟୋଗ କରନ୍ତୁ.
3b-9=-12b
0 ପାଇବାକୁ 4b^{2} ଏବଂ -4b^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
3b-9+12b=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 12b ଯୋଡନ୍ତୁ.
15b-9=0
15b ପାଇବାକୁ 3b ଏବଂ 12b ସମ୍ମେଳନ କରନ୍ତୁ.
15b=9
ଉଭୟ ପାର୍ଶ୍ଵକୁ 9 ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
b=\frac{9}{15}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 15 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
b=\frac{3}{5}
3 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{9}{15} ହ୍ରାସ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}