ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
w.r.t. n ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{2\left(n+1\right)}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. n ଏବଂ n+1 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି n\left(n+1\right). \frac{2}{n} କୁ \frac{n+1}{n+1} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{1}{n+1} କୁ \frac{n}{n} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{2\left(n+1\right)-n}{n\left(n+1\right)}
ଯେହେତୁ \frac{2\left(n+1\right)}{n\left(n+1\right)} ଏବଂ \frac{n}{n\left(n+1\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{2n+2-n}{n\left(n+1\right)}
2\left(n+1\right)-n ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{n+2}{n\left(n+1\right)}
2n+2-nରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{n+2}{n^{2}+n}
ବିସ୍ତାର କରନ୍ତୁ n\left(n+1\right).
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{2\left(n+1\right)}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)})
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. n ଏବଂ n+1 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି n\left(n+1\right). \frac{2}{n} କୁ \frac{n+1}{n+1} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{1}{n+1} କୁ \frac{n}{n} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{2\left(n+1\right)-n}{n\left(n+1\right)})
ଯେହେତୁ \frac{2\left(n+1\right)}{n\left(n+1\right)} ଏବଂ \frac{n}{n\left(n+1\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{2n+2-n}{n\left(n+1\right)})
2\left(n+1\right)-n ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n+2}{n\left(n+1\right)})
2n+2-nରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n+2}{n^{2}+n})
n କୁ n+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{\left(n^{2}+n^{1}\right)\frac{\mathrm{d}}{\mathrm{d}n}(n^{1}+2)-\left(n^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}+n^{1})}{\left(n^{2}+n^{1}\right)^{2}}
ଯେକୌଣସି ଦୁଇଟି ପୃଥକ୍‌ଯୋଗ୍ୟ ଫଙ୍କସନ୍‌ ପାଇଁ, ଦୁଇଟି ଫଙ୍କସନ୍‌ର କୋସେଣ୍ଟର ଡେରିଭେଟିଭ୍‌ ହେଉଛି ଲବର ଡେରିଭେଟିଭ୍‌ର ହର ଗୁଣା ବିଯୁକ୍ତ ହରର ଡେରିଭେଟିଭ୍‌ର ଲବ ଗୁଣା, ସମସ୍ତ ବର୍ଗଯୁକ୍ତ ହର ଦ୍ୱାରା ବିଭାଜିତ.
\frac{\left(n^{2}+n^{1}\right)n^{1-1}-\left(n^{1}+2\right)\left(2n^{2-1}+n^{1-1}\right)}{\left(n^{2}+n^{1}\right)^{2}}
ଏକ ପଲିନୋମିଆଲ୍‌ର ଡେରିଭେଟିଭ୍‌ ହେଉଛି ଏହାର ପଦଗୁଡିକର ଡେରିଭେଟିଭ୍‌ଗୁଡିକର ଯୋଗଫଳ. କୌଣସି ସ୍ଥିରାଙ୍କ ସଂଖ୍ୟାର ଡେରିଭେଟିଭ୍‌ ହେଉଛି 0. ax^{n} ର ଡେରିଭେଟିଭ୍‌ ହେଉଛି nax^{n-1}.
\frac{\left(n^{2}+n^{1}\right)n^{0}-\left(n^{1}+2\right)\left(2n^{1}+n^{0}\right)}{\left(n^{2}+n^{1}\right)^{2}}
ସରଳୀକୃତ କରିବା.
\frac{n^{2}n^{0}+n^{1}n^{0}-\left(n^{1}+2\right)\left(2n^{1}+n^{0}\right)}{\left(n^{2}+n^{1}\right)^{2}}
n^{2}+n^{1} କୁ n^{0} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{n^{2}n^{0}+n^{1}n^{0}-\left(n^{1}\times 2n^{1}+n^{1}n^{0}+2\times 2n^{1}+2n^{0}\right)}{\left(n^{2}+n^{1}\right)^{2}}
n^{1}+2 କୁ 2n^{1}+n^{0} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{n^{2}+n^{1}-\left(2n^{1+1}+n^{1}+2\times 2n^{1}+2n^{0}\right)}{\left(n^{2}+n^{1}\right)^{2}}
ସମାନ ଆଧାର ବା ବେସ୍‌ର ପାୱାର୍ଡକୁ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ.
\frac{n^{2}+n^{1}-\left(2n^{2}+n^{1}+4n^{1}+2n^{0}\right)}{\left(n^{2}+n^{1}\right)^{2}}
ସରଳୀକୃତ କରିବା.
\frac{-n^{2}-4n^{1}-2n^{0}}{\left(n^{2}+n^{1}\right)^{2}}
ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-n^{2}-4n-2n^{0}}{\left(n^{2}+n\right)^{2}}
ଯେ କୌଣସି ପଦ t, t^{1}=t ପାଇଁ.
\frac{-n^{2}-4n-2}{\left(n^{2}+n\right)^{2}}
0, t^{0}=1 ବ୍ୟତୀତ ଯେ କୌଣସି ପଦ t ପାଇଁ.