ମୂଲ୍ୟାୟନ କରିବା
-i
ପ୍ରକୃତ ଅଂଶ
0
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
ହର, 1-i ର ଜଟିଳ ମିଶ୍ରଣ ଦ୍ୱାରା ଉଭୟ ଲବ ଓ ହରକୁ ଗୁଣନ କରନ୍ତୁ.
\frac{\left(1-i\right)\left(1-i\right)}{1^{2}-i^{2}}
ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ.
\frac{\left(1-i\right)\left(1-i\right)}{2}
ସଂଜ୍ଞା ଦ୍ୱାରା, i^{2} ହେଉଛି -1. ହର ହିସାବ କରନ୍ତୁ.
\frac{1\times 1+1\left(-i\right)-i-\left(-i^{2}\right)}{2}
ଜଟିଳ ସଂଖ୍ୟାଗୁଡିକ 1-i ଏବଂ 1-i କୁ ଗୁଣନ୍ତୁ ଯେପରି ଆପଣ ଆପଣ ବାଇନମିଆଲ୍ଗୁଡିକ ଗୁଣନ କରନ୍ତି.
\frac{1\times 1+1\left(-i\right)-i-\left(-\left(-1\right)\right)}{2}
ସଂଜ୍ଞା ଦ୍ୱାରା, i^{2} ହେଉଛି -1.
\frac{1-i-i-1}{2}
1\times 1+1\left(-i\right)-i-\left(-\left(-1\right)\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{1-1+\left(-1-1\right)i}{2}
ବାସ୍ତବ ଏବଂ ଅବାସ୍ତବ ଅଂଶଗୁଡିକ 1-i-i-1 ରେ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-2i}{2}
1-1+\left(-1-1\right)i ରେ ଯୋଗଗୁଡିକ କରନ୍ତୁ.
-i
-i ପ୍ରାପ୍ତ କରିବାକୁ -2i କୁ 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
Re(\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
\frac{1-i}{1+i} ର ହରର ଜଟିଳ ମିଶ୍ରଣ ଦ୍ୱାରା ଉଭୟ ଲବ ଓ ହରକୁ ଗୁଣନ କରନ୍ତୁ, 1-i.
Re(\frac{\left(1-i\right)\left(1-i\right)}{1^{2}-i^{2}})
ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ.
Re(\frac{\left(1-i\right)\left(1-i\right)}{2})
ସଂଜ୍ଞା ଦ୍ୱାରା, i^{2} ହେଉଛି -1. ହର ହିସାବ କରନ୍ତୁ.
Re(\frac{1\times 1+1\left(-i\right)-i-\left(-i^{2}\right)}{2})
ଜଟିଳ ସଂଖ୍ୟାଗୁଡିକ 1-i ଏବଂ 1-i କୁ ଗୁଣନ୍ତୁ ଯେପରି ଆପଣ ଆପଣ ବାଇନମିଆଲ୍ଗୁଡିକ ଗୁଣନ କରନ୍ତି.
Re(\frac{1\times 1+1\left(-i\right)-i-\left(-\left(-1\right)\right)}{2})
ସଂଜ୍ଞା ଦ୍ୱାରା, i^{2} ହେଉଛି -1.
Re(\frac{1-i-i-1}{2})
1\times 1+1\left(-i\right)-i-\left(-\left(-1\right)\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
Re(\frac{1-1+\left(-1-1\right)i}{2})
ବାସ୍ତବ ଏବଂ ଅବାସ୍ତବ ଅଂଶଗୁଡିକ 1-i-i-1 ରେ ସମ୍ମେଳନ କରନ୍ତୁ.
Re(\frac{-2i}{2})
1-1+\left(-1-1\right)i ରେ ଯୋଗଗୁଡିକ କରନ୍ତୁ.
Re(-i)
-i ପ୍ରାପ୍ତ କରିବାକୁ -2i କୁ 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
0
-i ର ବାସ୍ତବ ଅଂଶ ହେଉଛି 0.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}