ମୂଲ୍ୟାୟନ କରିବା
\frac{1}{a\left(a-2\right)}
w.r.t. a ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
\frac{2\left(1-a\right)}{\left(a\left(a-2\right)\right)^{2}}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{a\left(a+2\right)}{\left(a^{2}-4\right)a^{2}}
\frac{a^{2}}{a+2} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା \frac{a}{a^{2}-4} କୁ ଗୁଣନ କରି \frac{a}{a^{2}-4} କୁ \frac{a^{2}}{a+2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{a+2}{a\left(a^{2}-4\right)}
ଉଭୟ ଲବ ଓ ହରରେ a ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{a+2}{a\left(a-2\right)\left(a+2\right)}
ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{1}{a\left(a-2\right)}
ଉଭୟ ଲବ ଓ ହରରେ a+2 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{1}{a^{2}-2a}
ଅଭିବ୍ୟକ୍ତିଙ୍କୁ ବିସ୍ତାରିତ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a+2\right)}{\left(a^{2}-4\right)a^{2}})
\frac{a^{2}}{a+2} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା \frac{a}{a^{2}-4} କୁ ଗୁଣନ କରି \frac{a}{a^{2}-4} କୁ \frac{a^{2}}{a+2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a+2}{a\left(a^{2}-4\right)})
ଉଭୟ ଲବ ଓ ହରରେ a ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a+2}{a\left(a-2\right)\left(a+2\right)})
\frac{a+2}{a\left(a^{2}-4\right)} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a\left(a-2\right)})
ଉଭୟ ଲବ ଓ ହରରେ a+2 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a^{2}-2a})
a କୁ a-2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-\left(a^{2}-2a^{1}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}-2a^{1})
ଯଦି F ଦୁଇଟି ପ୍ରଭେଦଯୋଗ୍ୟ ଫଙ୍କସନ୍ର କମ୍ପୋଜିସନ୍ ହେଉଛି f\left(u\right) ଏବଂ u=g\left(x\right), ତାହା ହେଉଛି, ଯଦି F\left(x\right)=f\left(g\left(x\right)\right), ତେବେ F ର ଡେରିଭେଟିଭ୍ ହେଉଛି f ର ଡେରିଭେଟିଭ୍ ଅନୁସାରେ u ଗୁଣା g ର ଡେରିଭେଟିଭ୍ ଅନୁସାରେ x କୁ, ତାହା ହେଉଛି, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(a^{2}-2a^{1}\right)^{-2}\left(2a^{2-1}-2a^{1-1}\right)
ଏକ ପଲିନୋମିଆଲ୍ର ଡେରିଭେଟିଭ୍ ହେଉଛି ଏହାର ପଦଗୁଡିକର ଡେରିଭେଟିଭ୍ଗୁଡିକର ଯୋଗଫଳ. କୌଣସି ସ୍ଥିରାଙ୍କ ସଂଖ୍ୟାର ଡେରିଭେଟିଭ୍ ହେଉଛି 0. ax^{n} ର ଡେରିଭେଟିଭ୍ ହେଉଛି nax^{n-1}.
\left(a^{2}-2a^{1}\right)^{-2}\left(-2a^{1}+2a^{0}\right)
ସରଳୀକୃତ କରିବା.
\left(a^{2}-2a\right)^{-2}\left(-2a+2a^{0}\right)
ଯେ କୌଣସି ପଦ t, t^{1}=t ପାଇଁ.
\left(a^{2}-2a\right)^{-2}\left(-2a+2\times 1\right)
0, t^{0}=1 ବ୍ୟତୀତ ଯେ କୌଣସି ପଦ t ପାଇଁ.
\left(a^{2}-2a\right)^{-2}\left(-2a+2\right)
ଯେ କୌଣସି ପଦ t, t\times 1=t ଏବଂ 1t=t ପାଇଁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}