Factoriseren
xy\left(x-3\right)\left(x+9\right)
Evalueren
xy\left(x-3\right)\left(x+9\right)
Delen
Gekopieerd naar klembord
xy\left(x^{2}+6x-27\right)
Factoriseer xy.
a+b=6 ab=1\left(-27\right)=-27
Houd rekening met x^{2}+6x-27. Factoriseer de expressie door te groeperen. De expressie moet eerst worden herschreven als x^{2}+ax+bx-27. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
-1,27 -3,9
Omdat ab negatief is, a en b de tegenovergestelde tekens. Omdat a+b positief is, heeft het positieve getal een grotere absolute waarde dan het negatieve getal. Alle paren met gehele getallen die een product -27 geven weergeven.
-1+27=26 -3+9=6
Bereken de som voor elk paar.
a=-3 b=9
De oplossing is het paar dat de som 6 geeft.
\left(x^{2}-3x\right)+\left(9x-27\right)
Herschrijf x^{2}+6x-27 als \left(x^{2}-3x\right)+\left(9x-27\right).
x\left(x-3\right)+9\left(x-3\right)
Beledigt x in de eerste en 9 in de tweede groep.
\left(x-3\right)\left(x+9\right)
Factoriseer de gemeenschappelijke term x-3 door gebruik te maken van distributieve eigenschap.
xy\left(x-3\right)\left(x+9\right)
Herschrijf de volledige gefactoriseerde expressie.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}