Oplossen voor x
x=-5
x = \frac{3}{2} = 1\frac{1}{2} = 1,5
Grafiek
Delen
Gekopieerd naar klembord
2xx-15+x\times 7=0
Variabele x kan niet gelijk zijn aan 0 omdat deling door nul niet is gedefinieerd. Vermenigvuldig beide zijden van de vergelijking met x.
2x^{2}-15+x\times 7=0
Vermenigvuldig x en x om x^{2} te krijgen.
2x^{2}+7x-15=0
Rangschik de polynoom om deze de standaardvorm te geven. Rangschik de termen van de hoogste naar de laagste macht.
a+b=7 ab=2\left(-15\right)=-30
Als u de vergelijking wilt oplossen, verdeelt u de linker-en rechterkant van de groepering. De eerste, de linkerzijde moet worden herschreven als 2x^{2}+ax+bx-15. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
-1,30 -2,15 -3,10 -5,6
Omdat ab negatief is, a en b de tegenovergestelde tekens. Omdat a+b positief is, heeft het positieve getal een grotere absolute waarde dan het negatieve getal. Alle paren met gehele getallen die een product -30 geven weergeven.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Bereken de som voor elk paar.
a=-3 b=10
De oplossing is het paar dat de som 7 geeft.
\left(2x^{2}-3x\right)+\left(10x-15\right)
Herschrijf 2x^{2}+7x-15 als \left(2x^{2}-3x\right)+\left(10x-15\right).
x\left(2x-3\right)+5\left(2x-3\right)
Beledigt x in de eerste en 5 in de tweede groep.
\left(2x-3\right)\left(x+5\right)
Factoriseer de gemeenschappelijke term 2x-3 door gebruik te maken van distributieve eigenschap.
x=\frac{3}{2} x=-5
Als u oplossingen voor vergelijkingen zoekt, lost u 2x-3=0 en x+5=0 op.
2xx-15+x\times 7=0
Variabele x kan niet gelijk zijn aan 0 omdat deling door nul niet is gedefinieerd. Vermenigvuldig beide zijden van de vergelijking met x.
2x^{2}-15+x\times 7=0
Vermenigvuldig x en x om x^{2} te krijgen.
2x^{2}+7x-15=0
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x=\frac{-7±\sqrt{7^{2}-4\times 2\left(-15\right)}}{2\times 2}
Deze vergelijking heeft de standaardvorm: ax^{2}+bx+c=0. Substitueer 2 voor a, 7 voor b en -15 voor c in de kwadratische formule, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2\left(-15\right)}}{2\times 2}
Bereken de wortel van 7.
x=\frac{-7±\sqrt{49-8\left(-15\right)}}{2\times 2}
Vermenigvuldig -4 met 2.
x=\frac{-7±\sqrt{49+120}}{2\times 2}
Vermenigvuldig -8 met -15.
x=\frac{-7±\sqrt{169}}{2\times 2}
Tel 49 op bij 120.
x=\frac{-7±13}{2\times 2}
Bereken de vierkantswortel van 169.
x=\frac{-7±13}{4}
Vermenigvuldig 2 met 2.
x=\frac{6}{4}
Los nu de vergelijking x=\frac{-7±13}{4} op als ± positief is. Tel -7 op bij 13.
x=\frac{3}{2}
Vereenvoudig de breuk \frac{6}{4} tot de kleinste termen door 2 af te trekken en weg te strepen.
x=-\frac{20}{4}
Los nu de vergelijking x=\frac{-7±13}{4} op als ± negatief is. Trek 13 af van -7.
x=-5
Deel -20 door 4.
x=\frac{3}{2} x=-5
De vergelijking is nu opgelost.
2xx-15+x\times 7=0
Variabele x kan niet gelijk zijn aan 0 omdat deling door nul niet is gedefinieerd. Vermenigvuldig beide zijden van de vergelijking met x.
2x^{2}-15+x\times 7=0
Vermenigvuldig x en x om x^{2} te krijgen.
2x^{2}+x\times 7=15
Voeg 15 toe aan beide zijden. Een waarde plus nul retourneert zichzelf.
2x^{2}+7x=15
Kwadratische vergelijkingen zoals deze kunnen worden opgelost door de wortel te berekenen. Hiervoor moet de vergelijking deze vorm hebben: x^{2}+bx=c.
\frac{2x^{2}+7x}{2}=\frac{15}{2}
Deel beide zijden van de vergelijking door 2.
x^{2}+\frac{7}{2}x=\frac{15}{2}
Delen door 2 maakt de vermenigvuldiging met 2 ongedaan.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=\frac{15}{2}+\left(\frac{7}{4}\right)^{2}
Deel \frac{7}{2}, de coëfficiënt van de x term door 2 om \frac{7}{4} op te halen. Voeg vervolgens het kwadraat van \frac{7}{4} toe aan beide kanten van de vergelijking. Met deze stap wordt de linkerkant van de vergelijking een perfect vierkant.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{15}{2}+\frac{49}{16}
Bereken de wortel van \frac{7}{4} door de wortel te berekenen van zowel de teller als de noemer van de breuk.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{169}{16}
Tel \frac{15}{2} op bij \frac{49}{16} door een gemeenschappelijke noemer te bepalen en de tellers op te tellen. Vereenvoudig vervolgens de breuk naar de kleinste termen indien mogelijk.
\left(x+\frac{7}{4}\right)^{2}=\frac{169}{16}
Factoriseer x^{2}+\frac{7}{2}x+\frac{49}{16}. In het algemeen, wanneer x^{2}+bx+c een perfect vierkant is, kan het altijd worden gefactoreerd als \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
Neem de vierkantswortel van beide zijden van de vergelijking.
x+\frac{7}{4}=\frac{13}{4} x+\frac{7}{4}=-\frac{13}{4}
Vereenvoudig.
x=\frac{3}{2} x=-5
Trek aan beide kanten van de vergelijking \frac{7}{4} af.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}