Oplossen voor x (complex solution)
x=\frac{2\pi n_{1}i}{\ln(y)}+\frac{\ln(2)+\pi i}{\ln(y)}
n_{1}\in \mathrm{Z}
y\neq 1\text{ and }y\neq 0
Oplossen voor y (complex solution)
y=e^{-\frac{2\pi n_{1}iRe(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}Im(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}+\frac{\pi \left(Im(x)+iRe(x)\right)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}\times 2^{\frac{Re(x)-iIm(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}
n_{1}\in \mathrm{Z}
Oplossen voor x
x=\log_{-y}\left(2\right)
y\neq -1\text{ and }y<0\text{ and }Numerator(\log_{-y}\left(2\right))\text{bmod}2=1\text{ and }Denominator(\log_{-y}\left(2\right))\text{bmod}2=1
Oplossen voor y
\left\{\begin{matrix}y=\left(-2\right)^{\frac{1}{x}}\text{, }&Numerator(x)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }\left(-2\right)^{\frac{1}{x}}\neq 0\\y=-\left(-2\right)^{\frac{1}{x}}\text{, }&Numerator(x)\text{bmod}2=1\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }\left(-2\right)^{\frac{1}{x}}\neq 0\end{matrix}\right,
Delen
Gekopieerd naar klembord
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}