Oplossen voor h (complex solution)
\left\{\begin{matrix}h=-\frac{1-e^{2x}}{2nxe^{x}}\text{, }&x\neq 0\text{ and }n\neq 0\\h\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}i\end{matrix}\right,
Oplossen voor n (complex solution)
\left\{\begin{matrix}n=-\frac{1-e^{2x}}{2hxe^{x}}\text{, }&x\neq 0\text{ and }h\neq 0\\n\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}i\end{matrix}\right,
Oplossen voor h
\left\{\begin{matrix}h=-\frac{1-e^{2x}}{2nxe^{x}}\text{, }&x\neq 0\text{ and }n\neq 0\\h\in \mathrm{R}\text{, }&x=0\end{matrix}\right,
Oplossen voor n
\left\{\begin{matrix}n=-\frac{1-e^{2x}}{2hxe^{x}}\text{, }&x\neq 0\text{ and }h\neq 0\\n\in \mathrm{R}\text{, }&x=0\end{matrix}\right,
Grafiek
Delen
Gekopieerd naar klembord
2nhx=e^{x}-e^{-x}
Vermenigvuldig beide zijden van de vergelijking met 2.
2nxh=-\frac{1}{e^{x}}+e^{x}
De vergelijking heeft de standaardvorm.
\frac{2nxh}{2nx}=\frac{-\frac{1}{e^{x}}+e^{x}}{2nx}
Deel beide zijden van de vergelijking door 2nx.
h=\frac{-\frac{1}{e^{x}}+e^{x}}{2nx}
Delen door 2nx maakt de vermenigvuldiging met 2nx ongedaan.
h=\frac{e^{2x}-1}{2nxe^{x}}
Deel e^{x}-\frac{1}{e^{x}} door 2nx.
2nhx=e^{x}-e^{-x}
Vermenigvuldig beide zijden van de vergelijking met 2.
2hxn=-\frac{1}{e^{x}}+e^{x}
De vergelijking heeft de standaardvorm.
\frac{2hxn}{2hx}=\frac{-\frac{1}{e^{x}}+e^{x}}{2hx}
Deel beide zijden van de vergelijking door 2hx.
n=\frac{-\frac{1}{e^{x}}+e^{x}}{2hx}
Delen door 2hx maakt de vermenigvuldiging met 2hx ongedaan.
n=\frac{e^{2x}-1}{2hxe^{x}}
Deel e^{x}-\frac{1}{e^{x}} door 2hx.
2nhx=e^{x}-e^{-x}
Vermenigvuldig beide zijden van de vergelijking met 2.
2nxh=-\frac{1}{e^{x}}+e^{x}
De vergelijking heeft de standaardvorm.
\frac{2nxh}{2nx}=\frac{-\frac{1}{e^{x}}+e^{x}}{2nx}
Deel beide zijden van de vergelijking door 2nx.
h=\frac{-\frac{1}{e^{x}}+e^{x}}{2nx}
Delen door 2nx maakt de vermenigvuldiging met 2nx ongedaan.
h=\frac{e^{2x}-1}{2nxe^{x}}
Deel e^{x}-\frac{1}{e^{x}} door 2nx.
2nhx=e^{x}-e^{-x}
Vermenigvuldig beide zijden van de vergelijking met 2.
2hxn=-\frac{1}{e^{x}}+e^{x}
De vergelijking heeft de standaardvorm.
\frac{2hxn}{2hx}=\frac{-\frac{1}{e^{x}}+e^{x}}{2hx}
Deel beide zijden van de vergelijking door 2hx.
n=\frac{-\frac{1}{e^{x}}+e^{x}}{2hx}
Delen door 2hx maakt de vermenigvuldiging met 2hx ongedaan.
n=\frac{e^{2x}-1}{2hxe^{x}}
Deel e^{x}-\frac{1}{e^{x}} door 2hx.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}