Overslaan en naar de inhoud gaan
Evalueren
Tick mark Image
Differentieer ten opzichte van x
Tick mark Image

Vergelijkbare problemen van Web Search

Delen

\int x^{5}+2x^{4}-5x^{2}\mathrm{d}x
Gebruik de distributieve eigenschap om x^{2} te vermenigvuldigen met x^{3}+2x^{2}-5.
\int x^{5}\mathrm{d}x+\int 2x^{4}\mathrm{d}x+\int -5x^{2}\mathrm{d}x
Integreer de som per voorwaarde.
\int x^{5}\mathrm{d}x+2\int x^{4}\mathrm{d}x-5\int x^{2}\mathrm{d}x
Factoriseer de constante in elk van de voorwaarden.
\frac{x^{6}}{6}+2\int x^{4}\mathrm{d}x-5\int x^{2}\mathrm{d}x
Vervang \int x^{5}\mathrm{d}x door \frac{x^{6}}{6}, omdat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} voor k\neq -1.
\frac{x^{6}}{6}+\frac{2x^{5}}{5}-5\int x^{2}\mathrm{d}x
Vervang \int x^{4}\mathrm{d}x door \frac{x^{5}}{5}, omdat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} voor k\neq -1. Vermenigvuldig 2 met \frac{x^{5}}{5}.
\frac{x^{6}}{6}+\frac{2x^{5}}{5}-\frac{5x^{3}}{3}
Vervang \int x^{2}\mathrm{d}x door \frac{x^{3}}{3}, omdat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} voor k\neq -1. Vermenigvuldig -5 met \frac{x^{3}}{3}.
\frac{x^{6}}{6}+\frac{2x^{5}}{5}-\frac{5x^{3}}{3}+С
Als F\left(x\right) een primitieve functie is van f\left(x\right), wordt de set van alle antiderivatives van f\left(x\right) gegeven door F\left(x\right)+C. Voeg daarom de constante van integratie C\in \mathrm{R} toe aan het resultaat.