Overslaan en naar de inhoud gaan
Evalueren
Tick mark Image
Differentieer ten opzichte van x
Tick mark Image

Vergelijkbare problemen van Web Search

Delen

\int 112x^{13}+128x^{7}+16x+112x^{6}+16\mathrm{d}x
Gebruik de distributieve eigenschap om 4x^{7}+4x+4 te vermenigvuldigen met 28x^{6}+4 en gelijke termen te combineren.
\int 112x^{13}\mathrm{d}x+\int 128x^{7}\mathrm{d}x+\int 16x\mathrm{d}x+\int 112x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Integreer de som per voorwaarde.
112\int x^{13}\mathrm{d}x+128\int x^{7}\mathrm{d}x+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Factoriseer de constante in elk van de voorwaarden.
8x^{14}+128\int x^{7}\mathrm{d}x+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Vervang \int x^{13}\mathrm{d}x door \frac{x^{14}}{14}, omdat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} voor k\neq -1. Vermenigvuldig 112 met \frac{x^{14}}{14}.
8x^{14}+16x^{8}+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Vervang \int x^{7}\mathrm{d}x door \frac{x^{8}}{8}, omdat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} voor k\neq -1. Vermenigvuldig 128 met \frac{x^{8}}{8}.
8x^{14}+16x^{8}+8x^{2}+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Vervang \int x\mathrm{d}x door \frac{x^{2}}{2}, omdat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} voor k\neq -1. Vermenigvuldig 16 met \frac{x^{2}}{2}.
8x^{14}+16x^{8}+8x^{2}+16x^{7}+\int 16\mathrm{d}x
Vervang \int x^{6}\mathrm{d}x door \frac{x^{7}}{7}, omdat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} voor k\neq -1. Vermenigvuldig 112 met \frac{x^{7}}{7}.
8x^{14}+16x^{8}+8x^{2}+16x^{7}+16x
De integraal van 16 zoeken met behulp van de tabel met algemene integralen regel \int a\mathrm{d}x=ax.
8x^{14}+16x^{8}+16x^{7}+8x^{2}+16x+С
Als F\left(x\right) een primitieve functie is van f\left(x\right), wordt de set van alle antiderivatives van f\left(x\right) gegeven door F\left(x\right)+C. Voeg daarom de constante van integratie C\in \mathrm{R} toe aan het resultaat.