Overslaan en naar de inhoud gaan
Evalueren
Tick mark Image
Differentieer ten opzichte van y
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

\frac{8y}{6y\left(-3y+2\right)}
Factoriseer de expressies die nog niet zijn gefactoriseerd.
\frac{4}{3\left(-3y+2\right)}
Streep 2y weg in de teller en in de noemer.
\frac{4}{-9y+6}
Breid de uitdrukking uit.
\frac{\left(12y^{1}-18y^{2}\right)\frac{\mathrm{d}}{\mathrm{d}y}(8y^{1})-8y^{1}\frac{\mathrm{d}}{\mathrm{d}y}(12y^{1}-18y^{2})}{\left(12y^{1}-18y^{2}\right)^{2}}
Voor elke twee differentieerbare functies is de afgeleide van de quotiënt van twee functies de noemer maal de afgeleide van de teller min de teller maal de afgeleide van de noemer, gedeeld door het kwadraat van de noemer.
\frac{\left(12y^{1}-18y^{2}\right)\times 8y^{1-1}-8y^{1}\left(12y^{1-1}+2\left(-18\right)y^{2-1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
De afgeleide van een polynoom is de som van de afgeleiden van de bijbehorende termen. De afgeleide van een constante term is 0. De afgeleide van ax^{n} is nax^{n-1}.
\frac{\left(12y^{1}-18y^{2}\right)\times 8y^{0}-8y^{1}\left(12y^{0}-36y^{1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Vereenvoudig.
\frac{12y^{1}\times 8y^{0}-18y^{2}\times 8y^{0}-8y^{1}\left(12y^{0}-36y^{1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Vermenigvuldig 12y^{1}-18y^{2} met 8y^{0}.
\frac{12y^{1}\times 8y^{0}-18y^{2}\times 8y^{0}-\left(8y^{1}\times 12y^{0}+8y^{1}\left(-36\right)y^{1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Vermenigvuldig 8y^{1} met 12y^{0}-36y^{1}.
\frac{12\times 8y^{1}-18\times 8y^{2}-\left(8\times 12y^{1}+8\left(-36\right)y^{1+1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Als u machten met hetzelfde grondtal wilt vermenigvuldigen, voegt u de bijbehorende exponenten toe.
\frac{96y^{1}-144y^{2}-\left(96y^{1}-288y^{2}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Vereenvoudig.
\frac{144y^{2}}{\left(12y^{1}-18y^{2}\right)^{2}}
Combineer gelijke termen.
\frac{144y^{2}}{\left(12y-18y^{2}\right)^{2}}
Voor elke term t, t^{1}=t.