Oplossen voor a
a=-\frac{y\left(k-ms-mx\right)}{3m}
y\neq 0\text{ and }m\neq 0
Oplossen voor k
k=\frac{m\left(xy+sy-3a\right)}{y}
y\neq 0\text{ and }m\neq 0
Grafiek
Delen
Gekopieerd naar klembord
m\times 3a-smy+yk=xmy
Vermenigvuldig beide zijden van de vergelijking met my, de kleinste gemeenschappelijke noemer van y,m.
m\times 3a+yk=xmy+smy
Voeg smy toe aan beide zijden.
m\times 3a=xmy+smy-yk
Trek aan beide kanten yk af.
3ma=mxy+msy-ky
De vergelijking heeft de standaardvorm.
\frac{3ma}{3m}=\frac{y\left(mx+ms-k\right)}{3m}
Deel beide zijden van de vergelijking door 3m.
a=\frac{y\left(mx+ms-k\right)}{3m}
Delen door 3m maakt de vermenigvuldiging met 3m ongedaan.
m\times 3a-smy+yk=xmy
Vermenigvuldig beide zijden van de vergelijking met my, de kleinste gemeenschappelijke noemer van y,m.
-smy+yk=xmy-m\times 3a
Trek aan beide kanten m\times 3a af.
yk=xmy-m\times 3a+smy
Voeg smy toe aan beide zijden.
yk=xmy-3ma+smy
Vermenigvuldig -1 en 3 om -3 te krijgen.
yk=mxy+msy-3am
De vergelijking heeft de standaardvorm.
\frac{yk}{y}=\frac{m\left(xy+sy-3a\right)}{y}
Deel beide zijden van de vergelijking door y.
k=\frac{m\left(xy+sy-3a\right)}{y}
Delen door y maakt de vermenigvuldiging met y ongedaan.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}