x को लागि हल गर्नुहोस्
x=-10
x=9
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
1+\frac{1}{x}-90x^{-2}=0
टर्महरूलाई पुन: क्रमागत गर्नुहोस्।
x+1-90x^{-2}x=0
शून्यले गरिने भाग परिभाषित नभएकाले चर x 0 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर x ले गुणन गर्नुहोस्।
x+1-90x^{-1}=0
समान आधारका पावरहरू गुणन गर्न तिनीहरूका घातांकहरू थप्नुहोस्। -1 प्राप्त गर्न -2 र 1 थप्नुहोस्।
x+1-90\times \frac{1}{x}=0
टर्महरूलाई पुन: क्रमागत गर्नुहोस्।
xx+x-90=0
शून्यले गरिने भाग परिभाषित नभएकाले चर x 0 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर x ले गुणन गर्नुहोस्।
x^{2}+x-90=0
x^{2} प्राप्त गर्नको लागि x र x गुणा गर्नुहोस्।
a+b=1 ab=-90
समीकरणको समाधान गर्न, x^{2}+x-90 लाई फर्मूला x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) प्रयोग गरी फ्याक्टर निकाल्नुहोस्। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,90 -2,45 -3,30 -5,18 -6,15 -9,10
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, सकारात्मक नम्बरको यथार्थ मान नकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -90 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1+90=89 -2+45=43 -3+30=27 -5+18=13 -6+15=9 -9+10=1
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-9 b=10
समाधान त्यो जोडी हो जसले जोडफल 1 दिन्छ।
\left(x-9\right)\left(x+10\right)
प्राप्त मानहरूको प्रयोग गरेर खण्डीकरण गरिएको अभिव्यञ्जक \left(x+a\right)\left(x+b\right) लाई पुन: लेख्नुहोस्।
x=9 x=-10
समीकरणको समाधान पत्ता लगाउन, x-9=0 र x+10=0 को समाधान गर्नुहोस्।
1+\frac{1}{x}-90x^{-2}=0
टर्महरूलाई पुन: क्रमागत गर्नुहोस्।
x+1-90x^{-2}x=0
शून्यले गरिने भाग परिभाषित नभएकाले चर x 0 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर x ले गुणन गर्नुहोस्।
x+1-90x^{-1}=0
समान आधारका पावरहरू गुणन गर्न तिनीहरूका घातांकहरू थप्नुहोस्। -1 प्राप्त गर्न -2 र 1 थप्नुहोस्।
x+1-90\times \frac{1}{x}=0
टर्महरूलाई पुन: क्रमागत गर्नुहोस्।
xx+x-90=0
शून्यले गरिने भाग परिभाषित नभएकाले चर x 0 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर x ले गुणन गर्नुहोस्।
x^{2}+x-90=0
x^{2} प्राप्त गर्नको लागि x र x गुणा गर्नुहोस्।
a+b=1 ab=1\left(-90\right)=-90
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई x^{2}+ax+bx-90 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,90 -2,45 -3,30 -5,18 -6,15 -9,10
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, सकारात्मक नम्बरको यथार्थ मान नकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -90 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1+90=89 -2+45=43 -3+30=27 -5+18=13 -6+15=9 -9+10=1
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-9 b=10
समाधान त्यो जोडी हो जसले जोडफल 1 दिन्छ।
\left(x^{2}-9x\right)+\left(10x-90\right)
x^{2}+x-90 लाई \left(x^{2}-9x\right)+\left(10x-90\right) को रूपमा पुन: लेख्नुहोस्।
x\left(x-9\right)+10\left(x-9\right)
x लाई पहिलो र 10 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x-9\right)\left(x+10\right)
वितरक गुण प्रयोग गरेर समान टर्म x-9 खण्डिकरण गर्नुहोस्।
x=9 x=-10
समीकरणको समाधान पत्ता लगाउन, x-9=0 र x+10=0 को समाधान गर्नुहोस्।
1+\frac{1}{x}-90x^{-2}=0
टर्महरूलाई पुन: क्रमागत गर्नुहोस्।
x+1-90x^{-2}x=0
शून्यले गरिने भाग परिभाषित नभएकाले चर x 0 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर x ले गुणन गर्नुहोस्।
x+1-90x^{-1}=0
समान आधारका पावरहरू गुणन गर्न तिनीहरूका घातांकहरू थप्नुहोस्। -1 प्राप्त गर्न -2 र 1 थप्नुहोस्।
x+1-90\times \frac{1}{x}=0
टर्महरूलाई पुन: क्रमागत गर्नुहोस्।
xx+x-90=0
शून्यले गरिने भाग परिभाषित नभएकाले चर x 0 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर x ले गुणन गर्नुहोस्।
x^{2}+x-90=0
x^{2} प्राप्त गर्नको लागि x र x गुणा गर्नुहोस्।
x=\frac{-1±\sqrt{1^{2}-4\left(-90\right)}}{2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 1 ले, b लाई 1 ले र c लाई -90 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-1±\sqrt{1-4\left(-90\right)}}{2}
1 वर्ग गर्नुहोस्।
x=\frac{-1±\sqrt{1+360}}{2}
-4 लाई -90 पटक गुणन गर्नुहोस्।
x=\frac{-1±\sqrt{361}}{2}
360 मा 1 जोड्नुहोस्
x=\frac{-1±19}{2}
361 को वर्गमूल निकाल्नुहोस्।
x=\frac{18}{2}
अब ± प्लस मानेर x=\frac{-1±19}{2} समीकरणलाई हल गर्नुहोस्। 19 मा -1 जोड्नुहोस्
x=9
18 लाई 2 ले भाग गर्नुहोस्।
x=-\frac{20}{2}
अब ± माइनस मानेर x=\frac{-1±19}{2} समीकरणलाई हल गर्नुहोस्। -1 बाट 19 घटाउनुहोस्।
x=-10
-20 लाई 2 ले भाग गर्नुहोस्।
x=9 x=-10
अब समिकरण समाधान भएको छ।
x^{-1}-90x^{-2}=-1
दुवै छेउबाट 1 घटाउनुहोस्। शून्यबाट कुनै अंक घटाउँदा सोही अंक बराबरको ऋणात्मक परिणाम आउँछ।
\frac{1}{x}-90x^{-2}=-1
टर्महरूलाई पुन: क्रमागत गर्नुहोस्।
1-90x^{-2}x=-x
शून्यले गरिने भाग परिभाषित नभएकाले चर x 0 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर x ले गुणन गर्नुहोस्।
1-90x^{-1}=-x
समान आधारका पावरहरू गुणन गर्न तिनीहरूका घातांकहरू थप्नुहोस्। -1 प्राप्त गर्न -2 र 1 थप्नुहोस्।
1-90x^{-1}+x=0
दुबै छेउहरूमा x थप्नुहोस्।
-90x^{-1}+x=-1
दुवै छेउबाट 1 घटाउनुहोस्। शून्यबाट कुनै अंक घटाउँदा सोही अंक बराबरको ऋणात्मक परिणाम आउँछ।
x-90\times \frac{1}{x}=-1
टर्महरूलाई पुन: क्रमागत गर्नुहोस्।
xx-90=-x
शून्यले गरिने भाग परिभाषित नभएकाले चर x 0 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर x ले गुणन गर्नुहोस्।
x^{2}-90=-x
x^{2} प्राप्त गर्नको लागि x र x गुणा गर्नुहोस्।
x^{2}-90+x=0
दुबै छेउहरूमा x थप्नुहोस्।
x^{2}+x=90
दुबै छेउहरूमा 90 थप्नुहोस्। शून्यमा कुनै पनि अंक जोड्दा जोडफल सोही अंक बराबर नै हुन्छ।
x^{2}+x+\left(\frac{1}{2}\right)^{2}=90+\left(\frac{1}{2}\right)^{2}
2 द्वारा \frac{1}{2} प्राप्त गर्न x पदको गुणाङ्कलाई 1 ले भाग गर्नुहोस्। त्यसपछि \frac{1}{2} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}+x+\frac{1}{4}=90+\frac{1}{4}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर \frac{1}{2} लाई वर्ग गर्नुहोस्।
x^{2}+x+\frac{1}{4}=\frac{361}{4}
\frac{1}{4} मा 90 जोड्नुहोस्
\left(x+\frac{1}{2}\right)^{2}=\frac{361}{4}
कारक x^{2}+x+\frac{1}{4}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{361}{4}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x+\frac{1}{2}=\frac{19}{2} x+\frac{1}{2}=-\frac{19}{2}
सरल गर्नुहोस्।
x=9 x=-10
समीकरणको दुबैतिरबाट \frac{1}{2} घटाउनुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}