मुख्य सामग्रीमा स्किप गर्नुहोस्
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

a^{5}\left(b^{7}\left(a+b\right)^{9}+4b^{7}a+28b^{6}a^{2}+84b^{5}a^{3}+140b^{4}a^{4}+140b^{3}a^{5}+84b^{2}a^{6}+28ba^{7}+4a^{8}\right)
वितरक गुण प्रयोग गरेर समान टर्म a^{5} खण्डिकरण गर्नुहोस्।
9a^{8}b^{8}+4a^{8}+36a^{7}b^{9}+84a^{6}b^{10}+126a^{5}b^{11}+126a^{4}b^{12}+140a^{4}b^{4}+84a^{3}b^{13}+84a^{3}b^{5}+36a^{2}b^{14}+28a^{2}b^{6}+9ab^{15}+4ab^{7}+b^{16}+b^{7}a^{9}+140b^{3}a^{5}+84b^{2}a^{6}+28ba^{7}
मानौं b^{7}\left(a+b\right)^{9}+4b^{7}a+28b^{6}a^{2}+84b^{5}a^{3}+140b^{4}a^{4}+140b^{3}a^{5}+84b^{2}a^{6}+28ba^{7}+4a^{8}। सरल गर्नुहोस्।
b^{7}a^{9}+\left(9b^{8}+4\right)a^{8}+\left(36b^{9}+28b\right)a^{7}+\left(84b^{10}+84b^{2}\right)a^{6}+\left(126b^{11}+140b^{3}\right)a^{5}+\left(126b^{12}+140b^{4}\right)a^{4}+\left(84b^{13}+84b^{5}\right)a^{3}+\left(36b^{14}+28b^{6}\right)a^{2}+\left(9b^{15}+4b^{7}\right)a+b^{16}
भेरिएबल a मा 9a^{8}b^{8}+4a^{8}+36a^{7}b^{9}+84a^{6}b^{10}+126a^{5}b^{11}+126a^{4}b^{12}+140a^{4}b^{4}+84a^{3}b^{13}+84a^{3}b^{5}+36a^{2}b^{14}+28a^{2}b^{6}+9ab^{15}+4ab^{7}+b^{16}+b^{7}a^{9}+140b^{3}a^{5}+84b^{2}a^{6}+28ba^{7} लाई पोलिनोमियलको रूपमा लिनुहोस्।
\left(a+b\right)\left(8a^{7}b^{8}+4a^{7}+28a^{6}b^{9}+56a^{5}b^{10}+70a^{4}b^{11}+56a^{3}b^{12}+60a^{3}b^{4}+28a^{2}b^{13}+24a^{2}b^{5}+8ab^{14}+4ab^{6}+b^{15}+b^{7}a^{8}+80b^{3}a^{4}+60b^{2}a^{5}+24ba^{6}\right)
b^{k}a^{m}+n को रूपमा एउटा खण्ड पत्ता लगाउनुहोस्, जहाँ b^{k}a^{m} ले सबैभन्दा उच्च घाताङ्क b^{7}a^{9} र n भएको b^{16} एकपदीय फ्याक्टर भाग गर्छ। उक्त एउटा फ्याक्टर a+b हो। यो खण्डले भाग गरेर बहुपदीय फ्याक्टरको खण्डिकरण गर्नुहोस्।
b^{7}a^{8}+\left(8b^{8}+4\right)a^{7}+\left(28b^{9}+24b\right)a^{6}+\left(56b^{10}+60b^{2}\right)a^{5}+\left(70b^{11}+80b^{3}\right)a^{4}+\left(56b^{12}+60b^{4}\right)a^{3}+\left(28b^{13}+24b^{5}\right)a^{2}+\left(8b^{14}+4b^{6}\right)a+b^{15}
मानौं 8a^{7}b^{8}+4a^{7}+28a^{6}b^{9}+56a^{5}b^{10}+70a^{4}b^{11}+56a^{3}b^{12}+60a^{3}b^{4}+28a^{2}b^{13}+24a^{2}b^{5}+8ab^{14}+4ab^{6}+b^{15}+b^{7}a^{8}+80b^{3}a^{4}+60b^{2}a^{5}+24ba^{6}। भेरिएबल a मा 8a^{7}b^{8}+4a^{7}+28a^{6}b^{9}+56a^{5}b^{10}+70a^{4}b^{11}+56a^{3}b^{12}+60a^{3}b^{4}+28a^{2}b^{13}+24a^{2}b^{5}+8ab^{14}+4ab^{6}+b^{15}+b^{7}a^{8}+80b^{3}a^{4}+60b^{2}a^{5}+24ba^{6} लाई पोलिनोमियलको रूपमा लिनुहोस्।
\left(a+b\right)\left(a^{7}b^{7}+7a^{6}b^{8}+4a^{6}+21a^{5}b^{9}+35a^{4}b^{10}+35a^{3}b^{11}+40a^{3}b^{3}+21a^{2}b^{12}+20a^{2}b^{4}+7ab^{13}+4ab^{5}+b^{14}+40b^{2}a^{4}+20ba^{5}\right)
b^{p}a^{q}+u को रूपमा एउटा खण्ड पत्ता लगाउनुहोस्, जहाँ b^{p}a^{q} ले सबैभन्दा उच्च घाताङ्क b^{7}a^{8} र u भएको b^{15} एकपदीय फ्याक्टर भाग गर्छ। उक्त एउटा फ्याक्टर a+b हो। यो खण्डले भाग गरेर बहुपदीय फ्याक्टरको खण्डिकरण गर्नुहोस्।
b^{7}a^{7}+\left(7b^{8}+4\right)a^{6}+\left(21b^{9}+20b\right)a^{5}+\left(35b^{10}+40b^{2}\right)a^{4}+\left(35b^{11}+40b^{3}\right)a^{3}+\left(21b^{12}+20b^{4}\right)a^{2}+\left(7b^{13}+4b^{5}\right)a+b^{14}
मानौं a^{7}b^{7}+7a^{6}b^{8}+4a^{6}+21a^{5}b^{9}+35a^{4}b^{10}+35a^{3}b^{11}+40a^{3}b^{3}+21a^{2}b^{12}+20a^{2}b^{4}+7ab^{13}+4ab^{5}+b^{14}+40b^{2}a^{4}+20ba^{5}। भेरिएबल a मा a^{7}b^{7}+7a^{6}b^{8}+4a^{6}+21a^{5}b^{9}+35a^{4}b^{10}+35a^{3}b^{11}+40a^{3}b^{3}+21a^{2}b^{12}+20a^{2}b^{4}+7ab^{13}+4ab^{5}+b^{14}+40b^{2}a^{4}+20ba^{5} लाई पोलिनोमियलको रूपमा लिनुहोस्।
\left(a+b\right)\left(a^{6}b^{7}+6a^{5}b^{8}+4a^{5}+15a^{4}b^{9}+20a^{3}b^{10}+15a^{2}b^{11}+16a^{2}b^{3}+6ab^{12}+4ab^{4}+b^{13}+24b^{2}a^{3}+16ba^{4}\right)
b^{v}a^{w}+c को रूपमा एउटा खण्ड पत्ता लगाउनुहोस्, जहाँ b^{v}a^{w} ले सबैभन्दा उच्च घाताङ्क b^{7}a^{7} र c भएको b^{14} एकपदीय फ्याक्टर भाग गर्छ। उक्त एउटा फ्याक्टर a+b हो। यो खण्डले भाग गरेर बहुपदीय फ्याक्टरको खण्डिकरण गर्नुहोस्।
b^{7}a^{6}+\left(6b^{8}+4\right)a^{5}+\left(15b^{9}+16b\right)a^{4}+\left(20b^{10}+24b^{2}\right)a^{3}+\left(15b^{11}+16b^{3}\right)a^{2}+\left(6b^{12}+4b^{4}\right)a+b^{13}
मानौं a^{6}b^{7}+6a^{5}b^{8}+4a^{5}+15a^{4}b^{9}+20a^{3}b^{10}+15a^{2}b^{11}+16a^{2}b^{3}+6ab^{12}+4ab^{4}+b^{13}+24b^{2}a^{3}+16ba^{4}। भेरिएबल a मा a^{6}b^{7}+6a^{5}b^{8}+4a^{5}+15a^{4}b^{9}+20a^{3}b^{10}+15a^{2}b^{11}+16a^{2}b^{3}+6ab^{12}+4ab^{4}+b^{13}+24b^{2}a^{3}+16ba^{4} लाई पोलिनोमियलको रूपमा लिनुहोस्।
\left(a+b\right)\left(a^{5}b^{7}+5a^{4}b^{8}+4a^{4}+10a^{3}b^{9}+10a^{2}b^{10}+12a^{2}b^{2}+5ab^{11}+4ab^{3}+b^{12}+12ba^{3}\right)
b^{d}a^{e}+f को रूपमा एउटा खण्ड पत्ता लगाउनुहोस्, जहाँ b^{d}a^{e} ले सबैभन्दा उच्च घाताङ्क b^{7}a^{6} र f भएको b^{13} एकपदीय फ्याक्टर भाग गर्छ। उक्त एउटा फ्याक्टर a+b हो। यो खण्डले भाग गरेर बहुपदीय फ्याक्टरको खण्डिकरण गर्नुहोस्।
b^{7}a^{5}+\left(5b^{8}+4\right)a^{4}+\left(10b^{9}+12b\right)a^{3}+\left(10b^{10}+12b^{2}\right)a^{2}+\left(5b^{11}+4b^{3}\right)a+b^{12}
मानौं a^{5}b^{7}+5a^{4}b^{8}+4a^{4}+10a^{3}b^{9}+10a^{2}b^{10}+12a^{2}b^{2}+5ab^{11}+4ab^{3}+b^{12}+12ba^{3}। भेरिएबल a मा a^{5}b^{7}+5a^{4}b^{8}+4a^{4}+10a^{3}b^{9}+10a^{2}b^{10}+12a^{2}b^{2}+5ab^{11}+4ab^{3}+b^{12}+12ba^{3} लाई पोलिनोमियलको रूपमा लिनुहोस्।
\left(a+b\right)\left(a^{4}b^{7}+4a^{3}b^{8}+4a^{3}+6a^{2}b^{9}+4ab^{10}+4ab^{2}+b^{11}+8ba^{2}\right)
b^{g}a^{h}+j को रूपमा एउटा खण्ड पत्ता लगाउनुहोस्, जहाँ b^{g}a^{h} ले सबैभन्दा उच्च घाताङ्क b^{7}a^{5} र j भएको b^{12} एकपदीय फ्याक्टर भाग गर्छ। उक्त एउटा फ्याक्टर a+b हो। यो खण्डले भाग गरेर बहुपदीय फ्याक्टरको खण्डिकरण गर्नुहोस्।
b^{7}a^{4}+\left(4b^{8}+4\right)a^{3}+\left(6b^{9}+8b\right)a^{2}+\left(4b^{10}+4b^{2}\right)a+b^{11}
मानौं a^{4}b^{7}+4a^{3}b^{8}+4a^{3}+6a^{2}b^{9}+4ab^{10}+4ab^{2}+b^{11}+8ba^{2}। भेरिएबल a मा a^{4}b^{7}+4a^{3}b^{8}+4a^{3}+6a^{2}b^{9}+4ab^{10}+4ab^{2}+b^{11}+8ba^{2} लाई पोलिनोमियलको रूपमा लिनुहोस्।
\left(a+b\right)\left(a^{3}b^{7}+3a^{2}b^{8}+4a^{2}+3ab^{9}+4ab+b^{10}\right)
b^{l}a^{o}+w को रूपमा एउटा खण्ड पत्ता लगाउनुहोस्, जहाँ b^{l}a^{o} ले सबैभन्दा उच्च घाताङ्क b^{7}a^{4} र w भएको b^{11} एकपदीय फ्याक्टर भाग गर्छ। उक्त एउटा फ्याक्टर a+b हो। यो खण्डले भाग गरेर बहुपदीय फ्याक्टरको खण्डिकरण गर्नुहोस्।
b^{7}a^{3}+\left(3b^{8}+4\right)a^{2}+\left(3b^{9}+4b\right)a+b^{10}
मानौं a^{3}b^{7}+3a^{2}b^{8}+4a^{2}+3ab^{9}+4ab+b^{10}। भेरिएबल a मा a^{3}b^{7}+3a^{2}b^{8}+4a^{2}+3ab^{9}+4ab+b^{10} लाई पोलिनोमियलको रूपमा लिनुहोस्।
\left(a+b\right)\left(a^{2}b^{7}+2ab^{8}+4a+b^{9}\right)
\left(ba\right)^{w}+w को रूपमा एउटा खण्ड पत्ता लगाउनुहोस्, जहाँ \left(ba\right)^{w} ले सबैभन्दा उच्च घाताङ्क b^{7}a^{3} र w भएको b^{10} एकपदीय फ्याक्टर भाग गर्छ। उक्त एउटा फ्याक्टर a+b हो। यो खण्डले भाग गरेर बहुपदीय फ्याक्टरको खण्डिकरण गर्नुहोस्।
a^{5}\left(a^{2}b^{7}+2ab^{8}+4a+b^{9}\right)\left(a+b\right)^{7}
पूर्णतया खण्डीकरण गरिएको अभिव्यञ्जक पुन: लेख्नुहोस्।